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Abstract. In this paper, we present a method to construct the root lattices based on Taussky’s
and Kriiskemper’s method which computes the generator matrix of an integral lattice, given
its Gram matrix. This yields an algebraic lattice, in the sense that the lattice is built via the
embedding of a number field.
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1 Introduction

A lattice A C R™ is a discrete set generated by integer combinations of n linearly independents vectors
v1, V9, , Uy € R™. A lattice A has diversity m < n if m is the maximum number such that for all
y=(y1,--* ,yn) € A, y # 0, there are at least m non-vanishing coordinates. Given a full diversity
lattice A C R™(m = n), the minimum product distance is defined as dpin(A) = min{[[;—; = ||}, for
all y = (y1,- -+ ,yn) € A, y # 0 [16]. Signal constellations having lattice structure have been studied
as meaningful means for signal transmission over single-antenna Rayleigh fading channel [6]. Usually
the problem of finding good signal constellations for a Rayleigh fading channel whose efficiency,
measured by lower error probability in the transmission, is strongly related to the lattice diversity
and minimum product distance, and has been studied in the last years [1—4,6, 10-12,15,16,22]. For
general lattices the minimum product distance are usually hard to estimate [20]. This parameter
can be obtained in certain cases of lattices associated to number fields, through algebraic properties.
The approach in this work, following [8] and [19] is the use of an algorithm which computes the
generator matrix of an integral lattice, given its Gram matrix. This yields an algebraic lattice, in the
sense that the lattice is built via the embedding of a number field. By this method, Oggier et al [22]
constructed rotated cubic lattices in dimension up to 7 over totally real number field with small
discriminant resulting in signal constellations with maximal diversity and best minimum product
distance. In this work, using these ideas, we constructed the root lattices Ao, D3, D4 and Ds over
number fields with small discriminants, since the method allow us to control the number field K, and
we also calculated the minimum product distance as a way to measure the efficiency for the Rayleigh
fading channel .
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429346/2018-2. and Fapesp - 2013/25977-7.
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2 Basic results

Let {v1,--- , vy} be aset of linearly independent vectors in R™ and A = {}"" | a;v;; a; € Z} alattice.
The set {v1, -+ ,v,} is called a basis for A. A matrix M whose rows are these vectors is said to
be a generator matriz for A while the associated Gram matriz is G = MM = ({v;, vj)); j—1- The
determinant of A is det(A) = det(G). If A is a integer matrix and det A = £1, then AM is another
basis for A. The determinant of A is an invariant under change of basis [9]. The lattice A is called
integral when the inner products of lattice vectors are all integers.

Let K be an algebraic number field of degree n, i.e., K = Q(w), with w € C a root of a monic
irreducible polynomial p(z) € Z[z]. The n distinct roots of p(x), namely, wy,wsa,- - ,wy,, are the
conjugates of w. The embeddings of K are homomorphisms o;(w) = w;, for all i = 1,2,---  n. So,
the embeddings o;, for i = 1,--- ,n, are the n distinct Q-homomorphisms from K to C such that
01, ,0p, arereal and op 41,y Opi4rgy Ori4ra+1s - 5 Or 42, are imaginary, where oy, 4,4 is the
complex conjugate of o, 4, for all i = 1,---  ry. In this case, n = r1 + 2ry. If all the embeddings of
K are real, in this case 11 = n and ro = 0, (resp., complex, in this case, r; = 0 and 2ry = n), K is
said to be totally real (resp., totally complex).

The set Og = {a € K : there is a monic polynomial f(z) € Z[z] such that f(a) = 0} is called
the ring of algebraic integers of K. It can be shown that Ok, as a Z-module, has a basis {w1, -+ ,wn}
over Z, where n is the degree of K. Furthermore, if {wy, - ,wy,} is a Z-basis of Ok, the integer
dx = (det[o;(w;)]} j:1)2 is called the discriminant of K and it is an invariant over change of basis. The
norm and the trace of any element o € K are defined as the rational numbers Ng g(a) = [[i; oi(c)
and Trg g(a) = Y, oi(a), respectively.

Let K be a totally real number field of degree n, and denote by o;, i = 1,--- ,n its n embeddings
into R"™. Let a € K satisfies 0;(«) > 0, Vi and A be a fractional ideal of K with a Z-basis {vy, -+ , v},
ie, A=Zvi ® - ® Zv,. An ideal lattice is an integral lattice whose generator matrix M is given
by

or(@)or(vi) -+ Von(a)on(v)
M= : : (1)
o1(a)or(vn) - on(a)on(vn)

which satisfies that M M7 = (Try q(avivy))f iy [15].

An order ® in K is a subring of K which as a Z-module is finitely generated and of maximal rank
n = [K:Q]. We can show that ® C Ok for any order of K, so that Ok is also called the mazimal
order of K.

Let ® be an order of K, and A be an ideal of ® . The minimum product distance of an ideal
lattice A = (A, by) of determinant det(b,) is

A | det(by) min{ A}
dpmin(A) = dg [0k : D)

and [Ok : D] is the index of ® in Ok [21].

where min(A) = 025?,4 |]]\7V((i))‘
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If A is principal, then the minimum product distance of A is

_[det(b,) 1
dp.min(8) = \\ “dx [Ox:D]

The relative minimum product distance of A, denoted by dj,re(A), is the minimum product
distance of a scaled version of A with unitary minimum norm vector, i.e., if the minimum norm of A
is p then

1 det(by) min{A}
(Vor\  dx  [Ox:®]

In order to compare the relative minimum product distance in different dimensions, we will work
with the normalized relative minimum product distance {/dp, rei(A).

Let K be a number field, and Ok be its ring of integers. If Ix denote the group of fractional ideals
of K and Pk denote the subgroup of K formed by the principal ideals, then the ideal class group,
denoted by CI(K), is Cl(K) = Ix/Px. The class number of K, denoted by h(K), is the cardinality of
CI(K). In particular, if O is a principal ideal domain, then h(K) = 1. The class number of a field K
can be understand as the measure of how principal a ring of integers is, i.e., what is the proportion
of principal ideals among all the ideals.

In this work, to calculate [Ok : ®] and h(K) we use the software Mathematica and PARI [5],
respectively.

dpmel (A) =

3 Construction of ideal lattices

We present some results which prove that any integral lattice can be constructed as an ideal lattice
of some algebra Z[X]/(f(X)), where f(X) € Z[X] is monic and irreducible.

We denote by M a finitely generated free Z-module of rank n and by b : M x M — Z a
symmetric bilinear form. Let f(X) € Z[X] be a monic irreducible polynomial of degree n and 6 be
a root of f. Then Z[X]/(f(X)) = Z[f] with basis {1,60,---,6""'}. If A is an ideal of Z[f], we set
A" ={cc Q) | Tr(cA) C Z}.

Lemma 3.1. [2/] The algebraic number 6 is the root of characteristic polynomial of the matriz A
and the components of the corresponding eigenvector vg can be chosen to form the basis of an ideal
in the ring formed by the polynomials in 6 with rational integers coefficients.

Lemma 3.2. [25] Let the matric A correspond to the ideal class determined by the ideal
A= (a1, ,ap) and let the transpose At correspond to the ideal B = (81, -+ ,Bn). Then B belongs
to the inverse class of A.

Theorem 3.3. [21] Let B € M, (Z) be a non-singular symmetric matriz. Let A € M, (Z) be such
that its characteristic polynomial X4 is irreducible and B~YAB = AT. Then B is the matriz of an
vdeal lattice.

Proof. Let 8 € C be a root of X4. It is an algebraic integer since X4 is monic with coefficients in Z.
By Lemma 3.1, there exists an eigenvector vg = (v1,--- ,v,)7 of A associated to 0, with v; € Z[f]
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and such that {vq,--- ,v,} is a Z-basis of an ideal of Z[f]. By the first proof of Lemma 3.2, there
exists an eigenvector v, = (v, ,v,)" of AT associated to 0, with v;» € Q(0) and such that

Troe)o(viv;) = 8ij, Vi, j. (2)

It follows from AT = B~'AB that ATB~lvy = B~ Avy = 6B~ 1wy, so that U; and B~ vy are both
eigenvectors of AT associated to 6. Since X r = X4 is irreducible over Q, it is separable, that is the
eigenvalues are distinct and consequently, the associated subspaces are of dimension 1. Thus, there
exists o € Q(6) such that vy = aB'vg, i.e. Bv, = avg. Denote B = (b;j); ;. We have

n n
’ . ! .
Z bijv; = av;, Vi — Z bijv; vk = avivg, Vi, k (3)
=1 =1

so that .
> b Trge)o(vjve) = Troe) olaviv).
j=1

By Equation 2, we get b, = T'rq) /Q(avivk) and we conclude that B is the matrix of an ideal lattice
A=7Zv1 ® - & Zv,. O

We show now that a matrix A such as described in the hypothesis of Theorem 3.3 always exists.

Theorem 3.4. [21] Let (M,b) be an integral lattice. Then there exists an algebraic integer 0, an
ideal A of Z[0] and o € (A%)# C Q(6) such that b is isomorphic to

AxA — Z
(r,y) = Troe)lary)
Furthermore, 6 can be assumed to be totally real.

Proof. By Theorem 3.3, it is enough to show that there always exists a matrix A € M,,(Z) whose
characteristic polynomial X4 is irreducible and totally real, and that satisfies B~'AB = AT. Let
N = (Xj;) be the symmetric n x n matrix where the coefficients X;; = Xj; are indeterminates. It is
shown in [19] that the characteristic polynomial Xgx of BN is irreducible. By Hilbert’s irreducibilily
theorem, there exists x;; = x;; € Q such that Xp(,,,) is irreducible and totally real. Let A = B(x5).

It satisfies B~1AB = AT O

4 The lattice construction algorithm

In this section we present an algorithm which takes as input a lattice Gram matrix B and outputs a
lattice generator matrix. More precisely, it computes a set of elements {vi,--- ,v,} and an element
a such that A = Zv; @ - - - @ Zv,, and the ideal lattice (A, by )

bo  AxA — Z
(z,y) = Troe)olary)
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has Gram matrix B.
The steps of algorithm are explained in details in [21].

Step 1: Computation of the matrix A

A matrix A € M,,(Z) satisfying B"'AB = AT and whose characteristic polynomial is irreducible
can be either generated randomly, or (possibly) constructed in order to obtain a specific number field
with minimal polynomial X4.

Step 2: Computation of a Z-basis of the ideal A
Recall from the proof of Theorem 3.3 that there exists an eigenvector vy of A associated to 6, a
root of X4, such that A = Zv1 @ --- @ Zvy,. In [24], it is shown that

vj = (1) A(A - 01,) (4)

where A;; is the jth minor of a given fixed row, say the ith row, of (A —61I,). It can be shown that
this vector is indeed an eigenvector of A.

Step 3: Computation of «

Recall again from the proof of Theorem 3.3 that there exists an eigenvector ”/9 = (v/l, e

of AT associated to 6, with v; € Q() and such that TTQ(g)/Q(UiU;-) = 0ij, Vi, j. It can be shown that

n
v =D mit'™,
i=1
where (m;)7;_; = G~H(VT)~! with

G = (TTQ(G)/Q(QFlejfl))ijl (5)

and V = (vy,--- ,vy,) is the matrix of the coordinates of v, - - , v, in the basis {1,6,---,6" 1}, The
n

element « is obtained from Z bijv; = awv;, Vi (Equation 3). If B is diagonal, it is enough to compute

Jj=1
!
one of the v;’s.

Step 4: Computation of the generator matrix of the lattice

We have
./&101(’01) ‘/anan(vl)
| vEnt) e vEee)
Vvaioi(vn) oo yanon(vn)
where 0;,i = 1,--- ,n denote the real embeddings of Q(f) and «o; = 0;(a), i =1,--- ,n.
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5 Construction of root lattices

In this section, we construct the lattices Ao, D3, D4 and D5 e calculate the relative minimum product
distante. By the way, taking o = 1 in (1) with {1,6,---,0" "'} a Z-basis of Z[f] C Ok, where
K = Q(#), we have that

dg = (det[oi(0771)]7,21)* = (det(M)? = det(M)det(M) = det(M )det(MT) =
= det(MM7) == det(Trg (0" 16771)7._, = det(G),

7.7

since by (5) we have G = T'rg (0167~ 1))1] 1-

5.1 A,-lattice

-1 10

A generator matrix of As-lattice is given by M = ( 0 1 1

), where the Gram matrix associ-

2 -1

atedlsB:<_1 9

). Consider the number field K given by X2 — 3. The matrix

-1 1
A=(20)
satisfies X4(X) = X2 — 3, where X, is irreducible over Q, and B~1AB = AT. We compute the
matrices V and G as explained, as vg = (v1,v2)T, where v; = (=1)"A;;(A - 01,,), let i = 1, we get

—(1—0 _9T _ [ Vit V12 vy V12 ) _ . 1 -2
vg=(1-6,-2) .LetV—(v21 v22>and(1’8)<2121 022>_(v1,w),sov_<_1 0 >

and consequently (V1)~! = < 0

1 >.Wehave

SIS

Trom o) Trow o) 2 0
i—1 -1 Q0)/Q Q0)/Q B
G = (Tra o0 0" ™))ijm = <T7“@<9)/@(9) Trowee@®) )~ \ 0 6 )

since 6 is a root of X4, the set of roots of X4 is {—\/g, \/3}, this means that the real embeddings of

0 are 01() = —v/3 and 02(0) = /3, thus Troeyo(l) = 01(1) + 02(1) = 2, Troe)o(0) = 01(0) +
02(0) = 0 and Trgg)(0%) = 01(6?) + 02(6%) = 01(0)* + 02(0)* = 6. We have dg = det(G) = 12,
2

l / ’ / ;
and consequently G~ = ( (2) (l) ) Let vy = (v),vy)7, where v; = Zmﬂe , Uy = Zmigﬁz_l
6 i

and

1 1 1
_ _ 5 0 0 —3 0 —3
(miy)ijmr = G V)T = ( 0 1 > ( R ) N ( -4 -4 )
6 2 6 2
Therefore v; = (v,vy)" = (—%0, —i — %H)T. The element « is given by avg = Bv/a, ie.,

()= ) (%)
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Using for example the last row, we compute oo = %. Since
a1 =o1(e) = a1(3) = 3,
az = o3(@) = o2(3) = 1,

0'1(’01) = 0'1(1 — 9) = 0'1(1) — 0'1(0
02(1)1) = 0’2(1 — 9) = 02(1) — 0'2(0
o1(v2) = 01(—2) = =2 and o2(v2) = 02(—2) = —2, it follows that the generator matrix of the lattice
is thus given by

- (Vo) r<>>:<f f)
\/0710'1(112) \/0720'2(112) -1 -1

We thus have det(by) = det(B) = 3, [Ok : Z[f]] = 1 and h(K) = 1. As the minimum norm of A,
is u = 2, it follows that the lattice built over Ok will have relative minimum product distance given
by

L et min(ay \ 3\
et min
dpret(A2) = = = = =0.5
P, 1(A2) (\/E)Q dx [Ok : Z[0]] ((\@)2 12)
5.2 Dgs-lattice
-1 -1 0
A generator matrix of Ds-lattice is given by M = 1 —1 0 |, where the Gram matrix
0 1 -1
2 0 -1
associated is B = 0 2 —1 |. Consider the number field K given by X3 + X2 —4X — 2.
-1 -1 2
The matrix
-1 -1 -1
A= o 2 1],
-1 -1 -2

satisfies X4 (X) = X34+ X2 —4X —2, where X4 is irreducible over Q, and B~'AB = AT. We compute
the matrices V and G as explained, as vp = (v1,v2,v3)T, where v; = (=1)"A;;(A—01,),let i = 1, we

get Vg = (62 — 3,—1,-0 + 2)7 Let
V11 V12 V13 V11 V12 V13 -3 -1 2
V = V21 V22 V23 and (1,9,92) V21 V22 V23 :(Ul,vg,vg),SOV: 0 0 -1
V31 V32 V33 U31 V32 V33 r 0 0
0 -1 0
and consequently (VI)™'=| 0 -2 -1 |. We have
1 -3 0
- Trowo(l)  Troee®)  Troeo0?) 3 -1 9
G = (Tro@ @0 ")z = | Traw®) Trow®®) Treee@®) |=| -1 9 -7
Troeyo(®) Troeo0®) Tree)e() 9 -7 41
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since 6 is a root of Xy, the set of roots of X, is {—0.47068, —2.34292,1.81361}, this means that
the real embeddings of 6 are o1(0) = —0.47068, o2(f) = —2.34292 and o3(f) = 1.81361, thus
Troe)e(1) = 01(1) + 02(1) + 03(1) = 3, Troe) () = 01(0) + 02(0) + 03(0) = —1, Tro(e /0(0?) =
01(9)2 + 02((9>2 + 03(9)2 = 9, TTQ(Q)/Q(QB) = 01(9)3 + 02((9)3 + 03(9)3 = —7 and TTQ(Q)/Q(94) =
o1(0)* + 02(0)* + 03(0)* = 41. We have dx = det(G) = 316, and consequently

80 _ 11 37
-1 U i
1 158 79
37 3 13
158 9 158
3 3
li i i ! y !/ y
Let vy = (v1,02,213)T, where vl E mi10° U2 = E miob* 1, Vg = E mizf " and
i=1 =1
80 1 3t 0 -1 o0 o 2 u
1 I 1 158 I
(m)3 = G—l(VT)—l — fﬁ ﬁ g 0 -2 -—1 — % Wb fﬁ
vy )i j=1 — - 158 158 79 - 9 1578 15
_3r 3 13 1 =3 0 13 _ 3
158 79 158 158 79

L INT 13 p2 27 49 727 21 32T
Therefore, vy = (v}, v9,v3)" = ( 158 + 799 + 1550 — 155 — 1580 — 790 155 — 1380 — 750°) - The
element « is given by avg = Bva, ie.,

0% -3 2 0 -1 —3—5:8+ }0+11§;802
o -1 = 0 2 -1 — 20— 20
—0+2 -1 -1 2 - 20— 92

Using for example the second rolvif \;ve compute a= 158 + 11589 + 158 L 92, Since
a1 = o1(a) =01 (1558 + 15780 + 15892) = 1558 + 157801( )+ 15801(9)2 = 0.21285,
ag = o3(a) = 09 (16558 + 1?5780 + 1151892) Pl 2(0) + 1151802( )2 = 0.03391,
as = o3(a) = 03 (155 + 1550 + 1550°) = 155 + 15503(0) + 15303(0)* = 1.75322,

o1(v1) = 01(6% = 3) = 01(0%) — 01(3) = 01(0)? — 3 = —2.77846,
o2(v1) = 02(0% — 3) = 02(02) — 02(3) = 02(0)? — 3 = 2.48929,
o3(v1) = 03(6% — 3) = 03(0%) — 03(3) = 03(0)% — 3 = 0.28916,

of the lattice is thus given by

Vaioi(vr) Jagoa(vy) /azos(vy) —1.28188  0.45845  0.38288
M = \/04101(1]2) \/04202(112) ,/04303(1}2) = —0.46136 —0.18417 —1.32409
Vaioi(vs) Jagoa(vs) /aszos(vs) 1.13988  0.79984  0.24680

We thus have det(by) = det(B) = 4, [Ok : Z[#]] = 1 and h(K) = 1. As the minimum norm of Dj is
@ = 2, it follows that the lattice built over Ok will have relative minimum product distance given by

1/3

1/3
5 B 1 det(by) min{A} B 1 4 B
p,Tel(DS) - (\/,17)3 dK [OK . Z[QH — <(\/§)3 316) = 0.34136
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5.3 Dy-lattice

-1 -1 0 0
. L. 1 -1 0 0 )
A generator matrix of Dy-lattice is given by M = 0 1 1 0 | where the Gram matrix
0 0 1 -1
2 0 —1 0
. . 0 2 -1 0 ) .
associated is B = 1 1 9 _1 Consider the number field K given by
0 0 -1 2
X% —8X?2 +8X — 2. The matrix
-2 1 1 2
0 1 -1 0
A= 1 — 1 -1 ’
1 -1 0
satisfies X4 (X) = X% —8X? +8X — 2, where X is irreducible over Q, and B~'AB = AT. We com-
pute the matrices V and G as explained, as vy = (v1,v2,v3,04)T, where v; = (—=1)"A;;(A —
01,), let i = 1, we get vg = (—0> +20% +60 — 1,0 —1,-60> +20 — 1,—6? + 30 — 1)T. Let
V11 V12 V13 V14 -1 -1 -1 -1
_ U1 V22 V23 V24 2 p3vvs . 1 1 2 3
V = v Uss Uss Vs and (1,0,04,0°)V = (v1,v2,v3,v4), SO V = 5 0 -1 -1
V41 V42 V43 V44 -1 0 0 0
0 1 -1 1
0 0 -1 1
T\—1 _
and consequently (V') o 1 -2 1 | We have
-1 3 —4 2
TT@(@)/@E;; TT@(@)/@((;Q) TTQ(@)/@EZ% TT@(@)/@E@%
Tr Tr Tr Tr 0
G=(Tr 91 19] 1 B — Q(9)/Q Q9)/Q Q(9)/Q Q(9)/Q
Trawyol Nig= Trow/e®) Trowa(®) Trawe(®!) Traeye(’)
Troe)e(0”) Trae@®) Troe®®) Troe)o@®)
4 0 16 —-24
_ 0 16 —24 136
o 16 —24 136 —-320 |’
—-24 136 -320 1312

sinceHisarootofXA,thesetofrootsofXAis{\[—\/2—\/i,ﬂ—i-\/Q—f,—f—\/Q—i—\/i,

—VZ+V2+12

\/§+\/2— 2,0’3(9

Tro)(0) =0, Troe )/@(92) = 16, Trg(g)o(0”)

} this means that the real embeddlngs of 6 are o1(0

=2 V22, 09(0) =

V2 = V2+V2 2 and oy4(6

\/>+ \/2+ thus T?"Q 9)/@( ) = 4,
—24 Tr@( y0(0h) = 136 Troe)o(0°) = =320
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and Tr@(g)/Q(H(j) = 1312. We have dg = det(G) = 2048, and consequently

67 131 9 17
O S
G = o 1t % %
i 8§

4 8 8 8

4 4 4
o INT o -1 -1 i—1
Let vy = (v1,09,v3,v4)", where v; = g mil' ", vy = g mif' ™", vy = E my30" ™,

i 7o 11 21

4 1y,T\—-1 é ﬁ ﬁ ﬁ
(mlj>zj 1= =G (V ) - _8§ 80 _2§ _21
5 1 it B

8 4 8 2

t_g o INT (1T 69 502 _ 993 _7 4 17 1p3 11 , 21 392 _ 11p3
Therefore, v, = (vy, vy, Vg, Uy) —(—Z+§9—§9 —g0° -1+ 50— 30°, -5 + 50— 530°— 50°,

_T 239 — 192 303)T. The element « is given by avy = Bvé7 ie.,

—03 +202+6—1 2 0 -1 0 —1—7+699— 202 — 20°
N 6—1 _ 0 2 -1 0 +170—193
—02+20—1 -1 -1 2 -1 —121+%0—§92 203
—0% +30 — 1 0 0 -1 2 —2l 4+ 89— 192 — §93
Using for example the second row, we compute o = f% + 206 — %92 — 2—8193. Since
o] = 01(04) =0 (—% + 200 — %92 — %93) = —2749 + 2001(9) 20'1(9)2 — %01(9)3 =4.27312
as = oa(a) = 09 (—2 +200 — 162 — 20%) = —22 + 2005(0) — L02(0)? — Zo2(0)® = 0.84820
a3 = o3(a) = o3 (—% +200 — 16 — 263) = -2 + 2003(0) — 03(0)> — F o3(0)® = 0.00061
ay = o4(e) = o4 (—F +200 — 562 — 263) = -2 + 2004(0) — L04(0)* — ZL04(0)® = 0.87806
o1(v1) = o1 (=03 + 292 +0— 1) —01(0)% +201(0)? + 01(0) — 1 = 0.21768,
o2(v1) = 0.32647, o3(v1) = 51.72790, o4(v1) = —0.27202,
0'1(’02): ( )—0'1(9)—1——0 35115
02(ve) = 1.17958, 03(vq) = —4.26197, 04(v2) —0.56645,
o1(v3) = 01(—=0% + 20 — 1) = —01(0)? + 201 (0) — 1 = —0.12330,
o9(v3) = —1.39141, o3(v3) = —18.16440, o4 (v3) = —0.32087,
o1(vy) = ( 02 +30 —1) = —01( )2+ 301(0) — 1 = 0.52553,
(v4)

10
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the lattice is thus given by

vaioi(v) yazoa(v1) (/agos(vi) (/agos(v)
Mo a1o1(va) \/azoa(va) (/azos(va) (Jauou(va) | _

Vaioi(vs) y/azoa(vs) \/agos(vs) \/auos(vs)

Vaioi(vy) (Japoa(vs) Jazos(vs) \/asos(vs)

0.44998  0.30067  1.28146 —0.25489
—0.72588  1.08637 —0.10558 —0.53079
—0.25489 —1.28146 —0.44998 —0.30067

1.08637  0.72588 —0.53079  0.10558

We thus have det(b,) = det(B) = 4, [Ok : Z[f]] = 1 and h(K) = 1. As the minimum norm of Dy is
u =2, it follows that the lattice built over Ok will have relative minimum product distance given by

detba) min{A} \ B
1 et min 1 4
1 (Dy) = a - = 0.32421
ViboraP) = Ui\ a0 - 200] ((@4 2048)
5.4 Ds-lattice
1 -1 0 0 0
1 -1 0 0 0
0 1 =1 0 0 |, where the Gram
0 0 1 -1 0
0 0 0 1 -1

2 0 -1 0
0o 2 -1 0
matrix associated is B = -1 -1 2 —1
0 0 -1 2
0o 0 0 -1
X5 —4Xx% - 3X3 +12X2% + 3X — 8. The matrix

A generator matrix of Ds-lattice is given by M = (
0
0
0 Consider the number field K given by
-1
2

1 -1 -3 -2 -2
-1 -1 -3 0 0
A= 1 0 4 0 1],
0 1 -1 2 0
-1 0 0 -1 0

satisfies xa(X) = X° — 4X* — 3X3 + 12X? + 3X — 8, where x4 is irreducible over Q, and
B7'AB = A'. We compute the matrices V and G as explained, as vy = (vy,v2,v3,v4,v5)", where
v; = (—1)T A (A - 015), let i = 1, we get

vg = (0% —56% +20% 470 —4,—6% + 30>+ 60 —5,0° — 26 — 0 +3, 20> + 0 + 4, -6 + 50% — 8)T

11
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Let

V11 V12 V13 V14 Ui5

V21 V22 V23 V24 V25

V = V31 V32 V33 VU3qg U35 and (1,9,92,93,,94)‘/: (111,212,2)3,1)4,125), SO
V41 V42 V43 V44 V45

Us1 Us2 Us3 Us4 Uss

—4 -5 3 4 -8 0O -1 0 1 1
7 1 -1 1 0 0 22 1 0
V= 2 3 -2 -2 5 | and consequently (VI)"t=]1 0 -1 1 2 2
5 -1 1 0 -1 0 35 2 1
1 0 0 0 0 1 -1 9 35
We have
G = (Troe) @ 107"1))] -,
Troeyol)  Trawe®) Trow®) Traee®®) Treeq@”)
Troeya®) Troeo(@®) Trow@®) Traee®!) Treeqd®)
= | Trowo(®®) Trow®) Treee®') Tree(0®) Troeo®) | =
Troe)0(@®) Trowe') Tree®®) Treed®) Troeo@”)
Troe)0@") Trowe@®) Treee®®) Tree@) Troeo(®)

= 22 64 262 1004 4000
64 262 1004 4000 15852
262 1004 4000 15852 63086

[%
) 4 22 64 262
4 22 64 262 1004

since 6 is a root of Xy, the set of roots of X4 is {—1.26452, —1.15765,0.87812,1.56341, 3.98063},
this means that the real embeddings of 6 are 0;(0) = —1.26452, 02(0) = —1.15765, o3(f) = 0.87812,
04(9) = 1.56341 and 05(9) = 3.98063, thus TTQ(Q) Q(l) = 5, TT’Q(Q)/Q(Q) = 4, T?”Q(g)/@(92) = 22,
Troe)0(0°) = 64, Troge)o(0) = 262, Troe)p(0°) = 1004, Tro)q(0°) = 4000, Trge) o(07) =
15852 and T'rqg)/q(0°) = 63086. We have dg = det(G) = 246832. So, we have

_ 17863 _ 59777 _ 48234 _ 12436 3170
9ot A3 GAPRT 13832 L04
(mij)2 ., = G L(vT)™! = Wiy B Ry Wb 495
1) )= - -

B3 @933 St 1333 1343
st 1 A €SS W 4
30854 30854 30854 30854 30854

/ R 'NT ! 17863 255156 816762 1643203 655904
Therefore, vy = (vy,vg,03,04,,05)", onde vy = —gEpe + 557 + J5ir — 1507 T 0550
vl — _B9TTT 4 1428110 5627102  861436° + 1630160* /48234 4 L7810 4953502 7050163 + 131056*
2 T T 15427 30854 30854 30854 30854 > Y3 T T 15427 30854 30854 30854 30854 °
v, — 12436 + 126920 + 990202 1383363 192164 /3170 _ 206576 + 230462 + 1249503  31276*
4 — T 15427 15427 15427 30854 30854 5 — 15427 30854 15427 30854 30854 °

12
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The element « is given by awvy = BU;, ie.,

0* —560° +26% +70 — 4 2 0 -1 0 0
—0%+302+6—5 0 2 -1 0 0

o 03 — 202 — 0+ 3 = -1 -1 2 -1 0 |,
—202 4+ 60 +4 0O 0 -1 2 -1
—60% +50% — 8 0O 0 0 —1 2

Using for example the fourth row, we compute

20192 231786 1453562 1517003 30680

— 15427 ~ 15427 30854 + 15427 15427
—20%2 4+ 60+ 4

Since
20192  2317801(0) 1453501 (6)> T 1517001 ()2 306801 (6)*
15427 15427 30854 15427 15427
= = = 0.08935,
a1 =o1(a) —201(0)2 + o1 (0) + 4
20192 _ 2317802(f)  1453502(6)2 T 1517002(6)3  306802(6)*
15427 15427 30854 15427 15427
oy = og(a) = = 3.29642,
2= o2(a) —209(0)2 + 0(0) + 4
20192  2317803(0)  1453503(0)% |, 1517005(0)3  306803(0)*
15427 — 15427 _ — 30854« isdo7 — — 5497 — 0.05212
—203(9)2+O'3(9)+4 ’
20192  2317804(0)  1453504(6)> + 1517004(0)%  306804(6)*
15427 15427 30854 15427 15427
Qq = a) = = 0.56021
1= 0u(@) —204(0)2 + 04(0) + 4 ’
20192  2317805(0)  1453505(0)? |, 1517005(0)%  306805(6)*
)= i5do7 — 15427 30854 isdor — — 5497 = 0.00188,

—20’5(0)2 + 0'5(0) +4

o1(v1) = 3.01313, o2(v1) = 0.13007, o3(v1) = 0.89806, o4(v;) = —1.30014, 05(1)1) = —8.74112,

o1(vg) = 0.55449, o9(ve) = —0.58569, o3(ve) = —2.48568, o4(ve) = 0.07481,
os5(v2) = —16.55790, 01(1)3) = —0.95548, o2(v3) = —0.07413, 03(1)3) = 1.25679,
o4(v3) = 0.36945, o5(v3) = 30.40340, o1(vy) = —0.46254, oo(v4) = 0.16200, o3(vs) = 3.33591,
04(1)4) = 0.67487, U5<’U4) = —23.71030, 01(1}5) = 2.01704, 02(1}5) = 0.25229,

o3(vs) = —4.82159, g4(vs) = 0.39993, and o5(vs) = 8.15231, it follows that the generator matrix of
the lattice is thus given by

0410'1(’01) 0420'2(’01) \/0730'3(’01) 0440'4(111) \/0750'5(111)
Varoi(vz)  (/agoa(va) (Jazos(va) (Jauou(vz) (/o505 (v2)
M = 0410'1(1)3) 0420'2(1)3) \/0730'3(113) 0440'4(1)3) 0450'5(1)3) =
Vvaioi(ve) Jazoa(vs) Jaszos(va) (Jauou(ve) /asos(vs)
04101(1)5) 04202(1}5) \/07303('1}5) 04404('1}5) \/07505(1}5)

0.90070  0.23615  0.20503 —0.97312 —0.37940
0.16575 —1.06339 —0.56750  0.05599 —0.71869
= | —0.28562 —0.13460 0.28693  0.27652  1.31966
—0.13826  0.29413  0.76162  0.50512 —1.02914

0.60294  0.45807 —1.10082  0.29934  0.35385

We thus have det(by) = det(B) = 4, [Ok : Z[0]] = 1 and h(K) = 1 = min{A}. As the minimum
norm of Dy is p = 2, it follows that the lattice built over Ok will have relative minimum product
distance given by

13
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6

1/5 1/5

s B 1 det(by) min{A} B 1 4 B
/dpret(Ds) = ir\ de Ox:zi0] —<(\/§)5\/@> = 0.23466

Minimum product distance performance

In this section we present Table 1, comparing the relative minimum product distance of lattices
constructed in the sections above and the Z™-lattices with the best relative minimum product distante
known.

Table 1: Performance

Dimens ao ’{/d rel(A) 7(/d rel(Z)
2 0.50000 0.66874
3 0.34136 0.52275
4 0.32421 0.43899
5 0.23466 0.38321

Despite the relative minimum product distance of lattices Ay, D3, D4 and D5 being smaller than

the distances of the Z™-lattices, for n = 2, 3,4, 5 respectively, these distances can be improved if we
consider algorithms that search for number fields with minimum discriminant.
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