MINICURSO: Utilização do Software Wingeom no Ensino Fundamental, Médio e Superior

ERMAC

Valter Locci

Apostila para o ERMAC

MINICURSO: Utilização do Software Wingeom no Ensino Fundamental, Médio e Superior

Resumo:

Introdução

- 1- Algumas Aplicações do Wingeom
- 2- Algumas Vantagens do Wingeom
- 3- Recursos Gerais do Wingeom
- 4- Recursos Bidimensionais do Wingeom
- 5- Manuseio do Wingeom 2-Dim
- 6- Algumas Atividades no Ensino Fundamental: Geometria Plana
- 7- Recursos Tridimensionais do Wingeom
- 8- Manuseio do Wingeom 3-Dim
- 9- Algumas Atividades no Ensino Médio: Geometria Espacial
- 10-O Wingeom no Ensino Superior: Poliedros
- 11-O Wingeom no Ensino Superior: Geometria Hiperbólica e Esférica
 - Geometria Euclidiana
 - Geometria Hiperbólica
 - Geometria Esférica

Introdução:

O objetivo do minicurso é estimular alunos e professores ao estudo e à aplicação da Geometria através do uso do software Wingeom, na versão em português.

Nesta apostila são apresentadas várias possibilidades de se usar o Wingeom no ensinoaprendizagem de geometria no ensino fundamental, médio e superior. Além de apresentar alguns de seus recursos básicos nos espaços bidimensional e tridimensional, inclusive com a possibilidade de realização de animações de um modo simples e direto, são listadas algumas tabelas que sintetizam os principais comandos e opções do menu do Wingeom, tais como criar, editar, realçar, e medir figuras geométricas. A abordagem no nível superior é focalizada na utilização do Wingeom no estudo dos poliedros e na ilustração das geometrias esféricas e hiperbólicas. A versão em Português do Wingeom utilizada nesta apostila foi compilada em 2 de outubro de 2007 (Versão Windows 95/98/ME/2K/XP) e pode ser obtida em :

http://wwwp.fc.unesp.br/~valocci/

Versões atualizadas do Wingeom estão disponíveis no site:

http://math.exeter.edu/rparris

As "Fichas" apresentadas nesta apostila são arquivos construídos com o Wingeom e são disponibilizadas no desenvolvimento do minicurso, que é realizado num Laboratório de Computação com o auxílio de um projetor multimídia para apresentação e execução das atividades.

1- Algumas Aplicações do Wingeom

- Ensino-aprendizagem
- Ilustração de textos
- Resolução de problemas geométricos
- Geometria Dinâmica
- Motivação ao estudo de geometria

2- Algumas Vantagens do Wingeom

- Cabe em um disquete
- É um software livre
- Está em constante desenvolvimento e atualização
- É de manuseio simples (janelas, teclado e mouse)
- Tem modelos prontos (Unidades)
- É bem versátil
- Tem menu de ajuda

3- Recursos Gerais do Wingeom

- Geometria Euclidiana Plana (2-dim)
- Geometria Euclidiana Espacial (3-dim)
- Geometria Hiperbólica
- Geometria Esférica
- Voronoi (Divisões do plano)
- Adivinhe (Transformações no plano)
- Mosaico (Modelos de preenchimento/ladrilhamento do plano)
- RVA demo (Composição de cores, utilizando o mouse)

4- Recursos Bidimensionais do Wingeom

- Construções geométricas e analíticas (pontos, reta, ângulo, circunferência, elipse, ...)

- Construções (divisão de segmentos, divisão de ângulos, paralelas, pontos notáveis, num triângulo, circunferências inscritas e circunscritas, ...)

- Unidades (triângulos, polígonos, cônicas, ...)
- Transformações (translação, rotação, dilatação, contração, reflexão, ...)
- Edições (legenda, realce, coordenada, cor, espessura, estilo, ...)
- Medidas (comprimento, perímetro, ângulo, área, ...)
- Animações (individual, simultânea, traços, ...)
- Movimentos (aproxima, afasta, gira, ...)

5- Manuseio do Wingeom 2-Dim

Após baixar e instalar o programa, clicar no aplicativo para surgir a janela abaixo:

Figura 1: Janela de Abertura

Clicar em Janela ou em Ajuda para obter:

la Ajuda		Janela 🗍	Aiuda
2-dim	F2		Ajuda
3-dim	F3		Sobre
Hiperbólica			
Esférica			
Voronoi			
Adivinhe			
Mosaicos			
RVA demo			
Abrir último			
Usar predefinições			
Sair			

Figura 2: Opções de Janela e de Ajuda

Clicar em 2-dim para abrir a janela:

🔺 sem n	ome1.wg	2										• 🗙
<u>A</u> rquivo	<u>P</u> onto	<u>R</u> eta	<u>C</u> ircunferência	<u>U</u> nidades	<u>T</u> ransf	<u>E</u> ditar	<u>M</u> edidas	<u>B</u> otões	<u>V</u> er	A <u>n</u> im	<u>O</u> utros	Aju <u>d</u> a
									oarra d ⊙ se ⊖ ret ⊖ cín	le ferram gmentos mi-retas as rculos	nentas	
									C arr C ed C co C co C rot	astar vért litar texto lar da áre ordenada acionar fe	ices a de trans 15 Ichar	ferência

Figura 3: Janela 2-dim

Se a Barra de Ferramentas não estiver visível ela pode ser aberta ao clicar no menu **Botões** e escolher **Barra de Ferramentas**. Ela pode ser movimentada clicando e mantendo pressionado o botão esquerdo do mouse sobre sua faixa superior e arrastando-a sobre a janela.

Uma visualização simultânea de todos os comandos da Barra de Ferramentas do Wingeom, em 2-dim e em 3-dim, pode ser encontrada nos arquivos "Wingeom 2D" e "Wingeom 3D" em: <u>http://wwwp.fc.unesp.br/~mauri</u>

Exemplo: Construir um triângulo de vértices A, B e C.

Marque na barra de ferramentas o item segmentos e em seguida clique com o botão direito do mouse em três pontos distintos da tela para obter os pontos A, B e C. Mantendo pressionado o botão esquerdo do mouse sobre o ponto A e arrastando até o ponto B obter o segmento AB. Do mesmo modo obter os segmentos BC e CA conforme a figura abaixo:

Figura 4: Triângulo ABC

A tabela abaixo apresenta comandos que podem ser executados diretamente do teclado.

Comando	Função
Ctrl A	Mostrar/esconder eixos (Axes)
Ctrl L	Mostrar/esconder todas as Legendas dos pontos
Home	Posicionar todas as legendas sobre os pontos
Ctrl Home	Afastar todas as legendas de seus pontos
Ctrl D	Visualizar os tipos de pontos ($\bullet, \circ, \times, +, , \bullet$)
Ctrl G	Abrir um menu de Grade (eixos, marcas, setas, pontos, rótulos, tamanho,
	intervalo, escalas, decimais, freqüências, pi, pontilhado, polar, retangular,)
Ctrl Z	Desfazer a construção mais recente
Ctrl Y	Refazer o que acabou de ser desfeito

Tabela 1:	Comandos	de	teclados
-----------	----------	----	----------

Ctrl W	Centralizar o desenho
Ctrl V	Visualizar centro
Page Up	Aproximar a figura (+ zoom)
Page Down	Afastar a figura (- zoom)
Seta ↑	Movimentar o desenho, visualizando a parte superior
Seta ↓	Movimentar o desenho, visualizando a parte inferior
Seta \rightarrow	Movimentar o desenho, visualizando o lado direito
Seta ←	Movimentar o desenho, visualizando o lado esquerdo
Esc	Fechar caixa de diálogo ativa
Tab	Mover para diferentes partes de uma caixa de diálogo ativa
Ctrl S	Salvar desenho

A tabela abaixo apresenta as funções que podem ser realizadas com os botões esquerdo e direito, conforme a opção marcada na Barra de Ferramentas (2-dim).

Opção	Botão Esquerdo (BotEsq)	Botão Direito (BotDir)
• Segmentos	Criar novos segmentos ao conectar dois pontos	Criar novos pontos
• Semi-retas	Criar novas semi-retas ao conectar dois pontos	Criar novos pontos
• Retas	Criar novas retas ao conectar dois pontos	Criar novos pontos
Círculos	Criar novos círculos a partir de um ponto como centro	Criar novos pontos
• Arrastar pontos	Movimentar um ponto	Alterar o tipo de ponto
• Editar texto	Deslocar a posição da legenda de um ponto	Mudar a legenda de um ponto; Inserir/formatar texto

Tabela 2: Funções do mouse conforme a opção da Barra de Ferramentas (2 dim).

• Colar da área de transferência	Arrastar imagens inseridas do clipboard (provenientes do Word, por exemplo)	Colar imagens (equações ou gráficos vetoriais) que estão na área de transferência – clipboard. Remover ou modificar o fundo (transparente ou opaco) de uma imagem inserida
Coordenadas	Visualizar as coordenadas dos pontos	Ajustar o quadro centralizando um ponto selecionado
Rotacionar	Arrastar um ponto (ou conjunto) em torno do centro de rotação	Fixar um centro (ponto) de rotação

A tabela seguinte apresenta as funções ou as opções de edição das legendas.

Sub menu	Função / Opções
Fonte	Alterar fonte, estilo e tamanho do ponto
Opaco	Tornar o fundo da legenda opaco ou não opaco
Cor	Alterar a cor de todas as letras
Cor de movimento	Alterar a cor de todas as letras quando em movimento
Trocar	Trocar legendas de dois pontos
Tipo de ponto	Mudar o estilo dos pontos (\bullet , \circ ,×,+, , \bullet) = ctrl D
Tamanho do ponto	Alterar o tamanho dos pontos (1 a 99)
Individual	Alterar o estilo e legenda de uma lista de pontos (bola fechada, bola
	aberta, não marque, em +, em ×, mostrar / não mostrar)

Tabela 3: Menu Editar / Legendas

A tabela seguinte apresenta as opções de realces da figura.

Tabela 4: Menu Editar / Realces

Sub menu	Opções

Atributos da reta	Espessura (1 a 100), cor, estilo (sólido, tracejado, riscado, risco-
	tracejado, traço-risco-traço, invisível)
Atributos do círculo	Espessura, cor e estilo
Preencher regiões	Cor e estilo (sólido, diagonal direito, quadriculado reto, quadriculado obliquo, diagonal esquerdo, horizontais, verticais) de polígonos ou círculos
Marcas	Onde, tipo (sinal, seta, arco do ângulo, sinal da perpendicular, raio/vetor, ângulo direcionado), número (1 a 6) e tamanho real (1,0 a 3,0)
Comprimento do sinal	Tamanho da porcentagem da largura do eixo
Comprimento da seta	Tamanho da porcentagem da largura do eixo
Raio do arco	Tamanho da porcentagem da largura do eixo
Comprimento do sinal de perpendicular	Tamanho da porcentagem da largura do eixo

A tabela seguinte apresenta os comandos, introduzidos por teclado, para realização de medidas na figura. Deve-se digitar o comando e apertar **enter** para que o resultado apareça no canto superior esquerdo da tela. Funções específicas devem ser digitadas entre colchetes, conforme apresentado na tabela.

Tabela 5: Menu Medidas

Convenção	Significado
А	Coordenadas do ponto A
AB	Comprimento do segmento AB
ABC	Área do triângulo ABC
ABCD	Área do quadrilátero ABCD
<abc< td=""><td>Medida (em graus) do ângulo ABC</td></abc<>	Medida (em graus) do ângulo ABC
AB+BC+CA	Perímetro do triângulo ABC

[per](ABCD)	Perímetro do quadrilátero ABCD
AB/AC	Razão entre os comprimentos de AB e AC
(AB^2+BC^2)^0.5	Comprimento da hipotenusa AC no triângulo retângulo ABC
[x](A)	Coordenada-x do ponto A
[sin](<abc)< td=""><td>Seno do ângulo ABC</td></abc)<>	Seno do ângulo ABC
[arc](ABC)	Comprimento do arco de circunferência de raio BA e ângulo central ABC
[cir](AB)	Comprimento da circunferência de raio AB
[pie](AB)	Área do circulo de raio AB
[slope](A,B)	Coeficiente angular do segmento AB
[eqn](A,B)	Equação inclinação-intercepto
[pi]	π
[phi]	1,61803 = razão áurea

Outras funções (que devem ser digitadas entre colchetes):

sin, cos, sec, csc, tan, cot, arcsin, arccos, arctan, sqr, int, frac, sgn, abs, exp, ln, log

6- Algumas Atividades no Ensino Fundamental: Geometria Plana

6.1- Atividades Introdutórias 2–Dim

Construir:

- a) Um triângulo e determinar suas medidas (lados, perímetro, ângulos e área);
- b) Um triângulo e seus pontos notáveis;
- c) Um triângulo, a circunferência inscrita e a circunscrita a ele.

Dicas importantes:

- 1) Visualizar o histórico de construção de algum arquivo escolhendo no menu da Barra de Ferramentas: **Outros/Listas/Histórico**.
- 2) Refazer passo a passo a construção de um arquivo escolhendo no menu da Barra de Ferramentas: **Outros/Repetir em câmera lenta**. (Utilize a Barra de Espaço para avançar e a tecla Q para sair).

6.2- Atividades Específicas de Geometria Plana

- 1- Construções com Régua e Compasso
 - a) Construa um segmento de reta e sua mediatriz.
 - b) Construa um ângulo e sua bissetriz.
 - c) Construa um triângulo e, por um de seus vértices, sua altura e sua mediana.
 - d) Construa um triângulo equilátero.
 - e) Construa um triângulo equiângulo.

Após as construções acima, use o menu Medidas para medir e confirmar seu trabalho.

- 2- Retas Paralelas e Transversais
 - a) Construa quatro retas paralelas, duas outras transversais e marque os pontos de intersecção.
 - b) Escolha uma das retas transversais, meça e compare os ângulos correspondentes, alternos e colaterais (internos e externos).
 - c) Verifique que vale o Teorema de Tales, para a construção do item a), estabelecendo a razão entre os segmentos correspondentes.
- 3- Triângulos
 - a) Construa um triângulo e determine a soma das medidas dos ângulos internos.
 - b) Construa um triângulo, prolongue um dos seus lados e verifique o Teorema do Ângulo Externo para um de seus vértices.
 - c) Construa um triângulo, use dilatação para construir um triângulo semelhante e verifique que os comprimentos dos lados correspondentes estão na mesma razão.
 - d) Construa um triângulo, desenhe a bissetriz de um de seus ângulos internos e verifique o Teorema da Bissetriz Interna para este desenho.
- 4- Pontos Notáveis de um Triângulo

Construa um triângulo qualquer e use translação para obter outros quatro triângulos congruentes a ele. Construa:

- a) no primeiro triângulo o seu baricentro.
- b) no segundo triângulo o seu incentro e a circunferência inscrita.
- c) no terceiro triângulo o seu circuncentro e a circunferência circunscrita.
- d) no quarto triângulo o seu ortocentro.
- e) no quinto triângulo os seus ex-incentros e as circunferências ex-inscritas.
- 5- Circunferências
 - a) Construa uma circunferência e desenhe um ângulo central, um inscrito e um de segmento sobre um mesmo arco desta.
 - b) Construa uma circunferência, marque um ponto interior a esta, desenhe duas cordas passando por este ponto e verifique a fórmula de Potência de um Ponto para este caso.
 - c) Construa uma circunferência, marque um ponto exterior a esta, desenhe duas retas secantes à circunferência passando por este ponto e verifique a fórmula de Potência de um Ponto para este caso.

6.3- Fichas de Atividades

Para a familiarização com o Wingeom são apresentadas Fichas (construídas no Wingeom) exemplificando algumas atividades que podem ser executadas. A atividade consiste em abrir o arquivo disponibilizado, executar no computador o que se pede e, após abrir uma nova janela do Wingeom, reproduzir a ficha (o mais próximo possível da original ou com melhorias de apresentação).

Ficha 1: Polígonos Regulares

Ficha 2: Teorema de Tales

Ficha 3: Teorema de Pitágoras

Ficha 5: Rosto do "João Bolinha"

Ficha 7: Rosto do "João Quadrado"

Sugestões de temas para construção de Fichas de Atividades, com animação:

- Rosto de: "João Hexágono", "João Polígonos".
- Corpo inteiro do "João Bolinha".

A ficha seguinte exemplifica o uso do Wingeom 2-dim na construção de figuras tridimensionais.

Ficha 9: Movimentação de um Tetraedro (no Wingeom 2-dim)

7- Recursos Tridimensionais do Wingeom

- Construções geométricas analíticas (pontos, segmento, face, ângulo diedral, esfera, cone, tronco, cilindro, disco, ...)

- Construções (coordenadas relativas, alturas, cortes por planos, intersecções, ...)
- Unidades (poliedros, superfícies, polígonos regulares, cônicas, ...)
- Transformações (translação, rotação, dilatação, ...)
- Edições (legenda, realce, coordenada, cor, transparência, espessura, ...)
- Medidas (comprimento, ângulo diedral, área, ...)
- Animações (individual, simultânea, traços, ...)
- Movimentos (aproxima, afasta, gira, ...)

8- Manuseio do Wingeom 3-Dim

Após abrir o Wingeom, clicar em Janela e em seguida escolher 3-dim para abrir a janela:

🔺 sem n	ome1.wg	13										• X	
Arquivo	Ponto	Linear	Curvo	Unidades	Transf	Editar	Medidas	Botões	Ver	Anim	Outros	Ajuda	
Aldano	Tonto	Lincul	curro	onduces	Turis	Cultur	inculuus		barra de ferramentas O editar coordenadas • editar texto • colar da área de transferênci • ver coord/recentralizar				
										fe	echar		

Figura 5: Janela 3-dim do Wingeom.

Se a Barra de Ferramentas não estiver visível ela pode ser aberta ao clicar no menu Botões e escolher Barra de Ferramentas.

Questões:

- Observe que a Barra de Ferramentas do Wingeom 3-dim não apresenta várias das opções encontradas no Wingeom 2-dim. Por quê?

- É possível posicionar um ponto no espaço tridimensional apenas clicando no plano da tela do computador?

- E se usássemos as teclas "Ctrl A" para visualizar os três eixos coordenados, seria possível?

Exemplo: Construir de um tetraedro de vértices A, B, C e D.

Clicar em Ponto, na Barra de Ferramentas, escolher "Coordenadas (absoluta)". Inserir um a um, através da caixa de diálogo que surge, os pontos A=(0,0,0), B=(1,0,0), C=(0,1,0) e D=(0,0,1). Clicar em Linear, na Barra de Ferramentas, escolher "Segmento ou face". Na caixa de dialogo que surge, digitar (de uma única vez) as faces: ABC, ABD, ACD, BCD. Clicando OK obtém-se o tetraedro como na figura abaixo, que pode ser girado através das setas de direção do teclado.

🔺 sem nome1.wg3											
<u>A</u> rquivo <u>P</u> onto <u>L</u> ine	ar <u>C</u> urvo	<u>U</u> nidades	<u>T</u> ransf	<u>E</u> ditar	<u>M</u> edidas	<u>B</u> otões	<u>V</u> er	A <u>n</u> im	<u>O</u> utros Aju <u>d</u> a		
D	novos elem	entos linear	es			coordenadas para novo ponto					
A B	ABC ABD	faça ACD BCD ok	uma lista	ncelar		x = 0 $y = 0$ $z = 1$ $(• move)$ $C mesnore$	er indep :ão defi na unid car	pendente inida lade para desfaz	rmente a o ponto		

Figura 6: Tetraedro

No Wingeom 3-dim, os pontos, as retas e os planos são inseridos através de coordenadas cartesianas, não sendo possível "arrastar" pontos com o mouse. Para mover um ponto para outra posição deve-se usar o menu Editar/Coordenadas. Um ponto se movimenta individualmente se ele for inserido após marcar a opção "mover independentemente", ou se movimenta em conjunto com outros (agrupamento denominado "unidade") se inserido após marcar a opção "mesma unidade".

Os Comandos de Teclado em 3-dim são os mesmos que os do 2-dim, exceto as setas que servem para rotacionar a figura.

A tabela abaixo apresenta as funções que podem ser realizadas com os botões esquerdo e direito, conforme a opção marcada na Barra de Ferramentas (3-dim).

Opção	Botão Esquerdo (BotEsq)	Botão Direito (BotDir)
• Editar coordenadas	Mudar coordenadas de pontos <u>não</u> inseridos no modo "posição definida" do menu Ponto / Coordenadas (absolutas)	Mudar coordenadas de pontos inseridos no modo "posição definida" do menu Ponto / Coordenadas (absolutas)
• Editar texto	Arrastar texto ou legenda	Inserir/editar texto Trocar a legenda de um ponto
• Colar da área de transferência	Arrastar imagens inseridas do clipboard (provenientes do Word, por exemplo)	Colar imagens (equações ou gráficos vetoriais) que estão na área de transferência; Remover ou modificar o fundo

Tabela 6: Barra de Ferramenta

		(transparente ou opaco) de uma imagem inserida
• Ver coordenadas/ recentralizar	Visualizar as coordenadas dos pontos	Ajustar o quadro centralizando um ponto selecionado

Os comandos dos Menus de Edição (Legendas, Realces) e Medidas em 3-dim são análogos àqueles em 2-dim.

9- Algumas Atividades no Ensino Médio: Geometria Espacial

9.1- Atividades Introdutórias 3-dim

Construir:

- a) Um tetraedro e determinar suas medidas
- b) Um tetraedro e inscrever e circunscrever uma esfera
- c) Construir e movimentar um tetraedro (inserir pontos independentes e pontos com posição definida)

9.2- Atividades Específicas de Geometria Espacial (em elaboração)

1- Construa um paralelepípedo reto retângulo e determine sua área e seu volume.

2- Construa uma pirâmide reta de base quadrangular determine sua área lateral, área total e volume.

3- Construa um cilindro reto e determine suas medidas.

4- Construa um cone reto e determine suas medidas.

5- Construa uma esfera e suas partes. Determine suas medidas.

9.3- Fichas de Atividades

Novamente, para a familiarização com o Wingeom são apresentadas Fichas (construídas no Wingeom) exemplificando algumas atividades que podem ser executadas. A atividade consiste em abrir o arquivo disponibilizado, executar no computador o que se pede e, após abrir uma nova janela do Wingeom, reproduzir a ficha (o mais próximo possível da original ou com melhorias de apresentação).

Ficha 10: Sólidos Usuais

10-O Wingeom no Ensino Superior: Poliedros

Noções Básicas

Poliedro: Sólido geométrico cuja superfície é composta por um número finito de faces e cada uma de suas faces é um polígono.

Classificações Principais:

Poliedro Convexo: Um segmento de reta unindo quaisquer dois de seus pontos está totalmente dentro do poliedro.

Poliedro Côncavo: Algum segmento de reta unindo dois de seus pontos tem pontos fora do poliedro.

Poliedro Regular: As faces são polígonos regulares e congruentes e de todos os vértices partem um mesmo número de arestas.

Poliedros de Faces Regulares: Todas as faces são polígonos regulares.

Poliedros de Faces Uniformes: Todas as faces são polígonos congruentes.

Exemplos de Poliedros:

Poliedros de Platão: poliedros regulares convexos.

Poliedros de Kleper-Poinsot: poliedros regulares não convexos.

A figura 7 apresenta os poliedros de Platão, do menu **Unidades/Poliedro/Clássicos**, com mesmo comprimento de arestas.

Figura 7: Poliedros de Platão.

A figura 8 apresenta os poliedros de Kepler-Poinsot, do menu **Unidades/Poliedro/Kepler-Poinsot**, com mesmo comprimento de arestas.

Figura 8: Poliedros de Kepler-Poinsot.

Operações sobre sólidos:

Poliedro Dual: É obtido ligando os centros de todos os pares de faces adjacentes de qualquer sólido, produzindo-se outro sólido menor.

Truncatura: Consiste em cortar os vértices ou as arestas de um sólido.

Snubificação: Consiste em afastar as faces do poliedro, rodar as mesmas de um certo ângulo (normalmente 45°), e preencher o espaço vazio entre as novas faces com triângulos.

Estrelamento: Consiste em estender os planos definidos pelas faces do poliedro até se intersectarem, formando assim um novo solido.

Figura 9: Alguns Poliedros Semiregulares.

Figura 10: Outros Poliedros Semiregulares

🔺 Polied	ros Conv	exos-1.w	/g3									• 🗙
Arquivo	Ponto	Linear	Curvo	Unidades	Transf	Editar	Medidas	Botões	Ver	Anim	Outros	Ajuda
Pirâmide Triangula P Pe	r irâmide ntagona	1 (T	Cúpula Priangula	r	Cúp Quad	ula rada		Cúpula Pentago	a	ł	Rotur Pentag	ada gonal

Figura 11: Alguns Poliedros Convexos

Figura 12: Outros Poliedros Clássicos.

Ficha 13: Dobradura de uma folha de papel (animação)

Ficha 14: Planificação de uma Pirâmide de Base Quadrada (Animação)

Ficha 15: Planificação de um Tetraedro Regular (Animação)

Ficha 16: Planificação de um Cubo (Animação)

Ficha 17: Planificação de um Octaedro (Animação)

Sugestões de temas para construção de Fichas de Atividades, com animação (desafios):

- Planificação de um Icosaedro
- Planificação de um Dodecaedro

11-O Wingeom no Ensino Superior: Geometria Hiperbólica e Esférica

Geometria Euclidiana

Os cinco postulados de Euclides:

- 1) Uma reta pode ser traçada ligando um ponto a qualquer outro ponto;
- 2) Uma reta finita (segmento) pode ser estendida continuamente em uma reta;
- 3) Um círculo pode ser descrito com qualquer centro e qualquer raio;
- 4) Todos os ângulos retos são iguais;

5) Se uma reta, intersectando duas retas em um plano, forma ângulos interiores de um mesmo lado com soma menor que a de dois ângulos retos, então as duas retas, se prolongadas indefinidamente, irão se encontrar do lado cuja soma dos ângulos é menor que a de dois ângulos retos.

O postulado cinco é equivalente a:

"Por um ponto fora de uma reta passa uma única reta paralela à reta dada".

Não assumindo o quinto postulado, obtêm-se outras geometrias, chamadas geometrias não euclidianas, tais como as Hiperbólicas, elípticas, esféricas.

- Geometria Hiperbólica

A janela da Geometria não-Euclidiana difere da janela Euclidiana de muitas formas. Por exemplo:

- Os desenhos se localizam somente dentro do círculo;
- Não há eixo e não há apresentação de coordenadas;
- Paralelogramos, trapézios e seções cônicas não estão presentes do menu Unidades.

Nenhuma "linha" é verdadeiramente uma "reta" nesta geometria, contudo. Uma (única) perpendicular comum às duas retas paralelas pode ser desenhada.

A figura abaixo mostra a janela do Wingeom Hiperbólico copiada e colada.

Figura 14: Segmento, Triângulo e Circunferência na Geometria Hiperbólica

Para aparecer o círculo, ao copiar e colar a janela do Wingeom Hiperbólico, deve-se utilizar o formato "copiar bipmap".

Ficha 18: Segmento, Triângulo e Circunferência

Ficha 19: Soma dos Ângulos Internos de um Triângulo

Ficha 20: Paralelismo e Perpendicularismo

- Geometria Esférica

Esta geometria é somente uma aproximação a geometria elíptica, que pode ser obtida estipulando-se quais pontos antipodais definem um ponto. Na geometria elíptica, as duas afirmações:

- (1) dois pontos determinam uma reta;
- (2) duas retas determinam um ponto;

são ambas verdadeiras. Nada disso é verdadeiro na geometria esférica.

A janela não-euclidiana difere da janela euclidiana em muitos aspectos, por exemplo:

- Os desenhos estão "assentados" sobre uma esfera unitária;
- Paralelogramos, trapézios e seções cônicas estão faltando no menu Unidades.

- Este é um modelo finito, então o comprimento de segmentos e os raios das circunferências são limitados;

- Dilatação é uma transformação permitida, porém a figura não é similar à sua imagem dilatada --- não há similaridade neste modelo.

🔺 sem ne	ome1.wg	S										• ×
Arquivo	Ponto	Reta	Circunferência	Unidades	Transf	Editar	Medidas	Botões	Ver	Anim	Outros	Ajuda
								ĺ	barra o	de ferran	nentas	
									€ se	gmentos		
									O re	tas		
									O cí	rculos		
									O ar	rastar vér	tices	
									O ec	litar texto		
									\odot co	olar da áre	ea de trans	ferência
									0 cc	ordenada	as	
									O ro	tacionar		
										fe	echar	

Figura 15: Tela do Wingeom na Geometria Esférica

Ficha 21: Segmento, Triângulo e Circunferência

Ficha 21: Soma dos Ângulos Internos de um Triângulo

Ficha 23 : Paralelismo e Perpendicularismo

Ficha 24: Dilatação de um triângulo

Daqui em diante leitor, é com você, abra novamente o Wingeom e continue nesta aventura de descobrir a Geometria com emoção, prazer e criatividade.

Referências Bibliográficas:

CARVALHO, Paulo César Pinto. *Introdução à Geometria Espacial*. Coleção do Professor de Matemática V. 10, Rio de Janeiro: SBM, 2002.

DOLCE, Osvaldo e POMPEO, José Nicolau. *Geometria Espacial, Posição e Métrica*, 5^a Ed., Coleção Fundamentos de Matemática Elementar, V. 10. São Paulo: Atual, 1998.

NÓBRIGA, Jorge Cássio Costa. *Aprendendo Matemática com o Cabri-Géomètre II*, 3ª Ed., V. 2. Brasília: Ed. do Autor, 2003.

SANTOS, Silvana Claudia. *A Produção Matemática em um Ambiente Virtual de Aprendizagem: O Caso da Geometria Euclidiana Espacial*. Dissertação (Mestrado em Educação Matemática) - Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, 2006.

http://pt.wikipedia.org http://math.exeter.edu/rparris