
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

FEMa: A Finite Element Machine for Fast Learning
Danillo Roberto Pereira, Marco Antônio Piteri, André Nunes Souza, João Paulo Papa, Member, IEEE,

and Hojjat Adeli, Fellow, IEEE, Distinguished Member,

ASCE, Fellow, AAAS, Fellow AIMBE, Fellow American Neurological Association

Abstract—Machine learning has played an important role in
the past decades, being in lockstep with the main advances
in computer technology. Given the massive amount of data
generated daily, there is a need for even faster and effective
learning algorithms that can provide updated models for real-
time applications and on-demand tools. In this paper, we propose
FEMa - A Finite Element Machine classifier - for supervised
learning problems, where each training sample is the center of
a basis function, and the whole training set is modeled as a
probabilistic manifold for classification purposes. FEMa has its
theoretical basis in the Finite Element Method, which is widely
used for numeral analysis in engineering problems. We show
FEMa is parameterless and it has a quadratic complexity for both
training and classification phases when we use basis functions
that obey some properties, as well as the proposed classifier
can obtain very competitive results when compared against some
state-of-the-art supervised pattern recognition techniques.

Index Terms—Finite element methods, Pattern classification,
Pattern recognition

I. INTRODUCTION

THE “Big Data” era has flooded researchers and the whole

community with tons of data daily. Multimedia-based

applications are in charge of generating an unsurmountable

amount of data, which end up at the screens of mobile

phones and tablets. Home-made videos are usually referred

as the bottleneck of any network traffic analyzer, since they

are uploaded to cloud-driven servers as soon as they are

generated or forwarded by someone else via the so-called

social networks.

The huge amount of data requires to be processed and mined

efficiently. Former versions of well-known machine learning

techniques such as Support Vector Machines (SVMs) [1],

Artificial Neural Networks (ANNs) [2], [3], Polynomial Neu-

ral Networks [4], Recurrent Networks [5], [6], and Adaptive

Conjugate Gradient Neural Networks [7], [8] are now being

implemented in General-Purpose Computing on Graphics Pro-

cessing Units (GPGPU) to cope with streams of data that need

to be analyzed daily.

Active learning is another research area that needs fast tech-

niques for learning and classification. One very usual example

D. Pereira and J. Papa are with the Department of Computing, São Paulo
State University, Bauru, SP, 17033-360 Brazil e-mail: dpereira@ic.unicamp.br,
papa@fc.unesp.br

M. Piteri is with the Department of Computing, São Paulo State University,
Presidente Prudente, SP Brazil e-mail: piteri@fct.unesp.br

A. Souza is with the Department of Electrical Engineering, São Paulo State
University, Bauru, SP, 17033-360 Brazil e-mail: andrejau@feb.unesp.br

H. Adeli is with the Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, OH 43210 USA e-mail:
adeli.1@osu.edu

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

concerns interactive and semi-supervised learning tools for

image classification and annotation. Suppose a physician wants

to classify a Magnetic Resonance image of the brain, which

may contain hundreds of thousands of pixels. The user shall

mark a few positive and negative samples (pixels) that will be

used to train the classifier, which then classifies the remaining

image. Further, the user shall refine the results by marking

some misclassified regions for training once more. Notice the

whole process should take a few seconds/iterations. In this

context, the user feedback is crucial to obtain a concise/reliable

labeled image.

Considering the aforementioned situation, some techniques

may not be appropriate to be employed, since they can hardly

handle the problem of updating the model learned previously

when new training samples come to the problem. Support

Vector Machines are known to be costly, since they require a

fine-tuning parameter step, which turns out to be the bottleneck

for efficient implementations [9]. Although different variations

and GPU-based implementations are published monthly, it

is not straightforward to use them, which makes them far

from being user-friendly. Additionally, SVM training step is

quadratic with respect to the number of training examples.

Deep learning techniques have have received a lot of atten-

tion in recent years [10], [11], since they can learn features

from images/signals without label information. Although such

approaches have obtained outstanding results in a number of

applications, they usually overfit under small training sets.

Also, some architectures require hundreds of parameters for

fine-tuning resulting in very costly training.

Graph-based pattern recognition techniques took their place

in the scientific community as well. Papa et al. [12], [13], [14],

[15] proposed the Optimum-Path Forest (OPF), a framework

for the design of classifiers. OPF has obtained promising

results in a number of applications, being much faster than

SVM for training, since its original version is parameter-

less [13], [14] and does not require fine-tuning parameters.

However, OPF-based classifiers are usually affected by high-

dimensional spaces, a shortcoming for techniques that make

use of distances for classification purposes.

Artificial Neural Networks have been reinvented in the

last decades. From the original Backpropagation learning

algorithm [16] to faster approaches such as the Levenberg-

Marquardt [17], the reader can refer to a number of variants

that somehow try to deal with the problem of avoiding getting

trapped from local optima during training, as well as to make

their convergence step faster [18]. Polynomial neural net-

works [19], hybrid networks [20], and probabilistic ones [21],

[22] have been used in a number of different applications in

the literature.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

In early 90’s, Specht [21] proposed the Probabilistic Neu-

ral Networks (PNNs), which basically replaces the sigmoid

activation function by an exponential one. Since PNNs do

not require using Backpropagation, they are usually much

faster than traditional ANNs [23], [24]. PNNs are composed

of four layers: input, pattern, summation and output. The first

layer is responsible for feeding the network with features

extracted from samples, and the pattern layer aims at encoding

all training data patterns, i.e. the number of pattern units

(Gaussian probability distribution functions) is the very same

number of training samples. The summation layer contains

one unit for each class, and the output layer uses a Bayesian

rule to compute the probability in assigning a certain class to

a given input data. Since standard PNNs use an exponential

activation function, one needs to set the variance (spread) of

the Gaussian function, which can considerably influence the

effectiveness of the network.

Some years later, Ahmadlou and Adeli [22] proposed the

Enhanced Probabilistic Networks (EPNNs), a clever way to pe-

nalize outliers when computing the influence of the Gaussian

distribution over the training samples. Actually, the authors

proposed to compute a variance for each training sample based

on a neighborhood, and depending on the class labels of its

neighbours, the Gaussian function centered at an outlier pattern

can barely influence other points. Papers that make use of

EPNNs have appeared in the literature [25], [26], since EPNNs

are fast and very suitable for large-scale datasets.

Moving from machine learning to numerical analysis, one

of the most widely used approaches for finding approximate

solutions to boundary-value problems in partial differential

equations is the Finite Element Method (FEM) [27], [28].

Roughly speaking, FEM divides the original problem into

smaller pieces called finite elements, and the simple equations

that describe each element are assembled in a complex one

that should describe the whole problem. Therefore, given a

set of points, FEM can interpolate them using basis functions

in order to build a manifold that contains all these points.

In this paper, we borrow some ideas related to FEM to

propose FEMa - Finite Element Machine, a new framework

for the design of pattern classifiers based on finite element

analysis. Depending on the basis function used, FEMa can

be parameterless. It features a quadratic complexity for both

training and classification phases, which turns out to be its

main advantage when dealing with massive amount of data.

In short, FEMa learns a probabilistic manifold built over the

training samples, which are the center of a finite element basis.

Therefore, the problem of learning a manifold using one finite

element basis is broken into a surface composed of several

bases, centered at each training sample. In this paper, we show

that FEMa can obtain very competitive results when compared

against some state-of-the-art supervised pattern recognition

techniques.

The remainder of this paper is organized as follows. Sec-

tions II and III introduce the theoretical background related to

FEM and FEMa, respectively. Section IV presents the method-

ology and experiments used to evaluate FEMa in the context

of big data environments, and Section V states conclusions

and future works.

II. FINITE ELEMENT METHOD

In this section, we present the main concepts related to

the Finite Element Method. Broadly speaking, FEM aims at

approximating functions given a set of sampled points by

means of basis functions. In a first step, the basis functions

are used to interpolate the manifold based on the sampled

points (domain) and their respective responses to that functions

(image). Further, the approximation step aims at interpolating

new points to the learned manifold.

A. Function Approximation

Let D and V be an infinite and a non-trivial set, respectively,

and F : D → V be a function that contains an infinite

number of mappings. Therefore, F can not be represented as

a generic element in computers, and thus one needs to replace

F by an approximation function F̃ in some finite subspace.

Additionally, the quality of the approximation function F̃ can

be measured by the norm ‖F̃ − F‖, where ‖ · ‖ can be any

norm defined on some finite space. Also, that norm is often

called approximation error.

1) Approximation Basis: A basis φ of the space V is an

array φ = [φ1, φ2, . . . , φn] of functions whose elements are

linearly independent. Also, every element v ∈ V can be

obtained by a linear combination of those functions as follows:

v =

n
∑

i=1

aiφi, (1)

where a = [a1, a2, . . . , an] such that ai ∈ ℜ. Notice the

approximation function F̃ can be represented in computers

by the real coefficients a when φ is a basis of some finite

space.

2) Interpolation: One basic application of approximation

spaces is the interpolation of discrete data. In this con-

text, given a set of points X = {x1, x2, . . . , xn} such that

X ⊂ D, and their respective set of associated values Y =
{y1, y2, . . . , yn}, such that Y ⊂ V , the goal is to find an

approximation function F̃ that interpolates the pairs (xi, yi)
such that:

F̃ (xi) = yi, ∀i ∈ {1, 2, . . . , n}. (2)

In order to describe F̃ by the basis φ one needs to find the

coefficients a such that:

F̃ (xi) =

n
∑

j=1

ajφj(xi) = yi, ∀i ∈ {1, 2, . . . , n}. (3)

The above equation means each element yi ∈ Y is generated

from the linear combination between all basis functions and

their respective coefficients.

The above formulation is equivalent to solve the following

linear system in the matrix notation:

Za = y, (4)

where y = [y1, y2, . . . , yn]
T , and Z is an n × n matrix that

stores the influence of each basis element φi concerning the

point xj , as follows:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Zij = φi(xj). (5)

3) Interpolating Bases: A basis φ is an interpolating basis

regarding the points in X iff:

φi(xj) =

{

1 if i = j
0 otherwise.

(6)

For such a basis, Z stands for the identity matrix, which means

ai = yi, ∀i ∈ {1, 2, . . . , n}.

However, one can face bases that are not interpolating

natively. In this case, given a non-interpolating basis, we can

obtain a new interpolating one φ̂ where each element φ̂i is a

linear combination of the elements φi, as follows:

φ̂i(x) =

n
∑

j=0

Z−1

ij φj(x), (7)

where Z−1 is the inverse of matrix Z.

B. Partition of Unity Basis

A basis φ is a partition of unity iff:

φi(x) ≥ 0, ∀i and ∀x ∈ D, (8)

and

n
∑

i=1

φi(x) = 1, ∀x ∈ D. (9)

Such basis has smoothing properties, as follows:

al ≥

n
∑

i=1

aiφi(x) ≥ ah, (10)

where al and ah stand for the minimum and maximum

coefficients of a. The smoothness in interpolation-driven com-

putations is often desired to avoid discontinuities.

Given a basis φ that satisfies Equation 8 only, we can easily

define a new basis φ̃ in order to satisfy Equation 9 either.

Such new basis can be obtained by means of the following

normalization step:

φ̃i(x) =
φi(x)

∑n

j=1
φj(x)

. (11)

C. Finite Element Basis

Let S(φ(x)) be the support of a given basis φ(x), which

represents the set of points x ∈ D such that φ(x) 6= 0. A

finite element basis φ for an approximation space requires

S(φ(x)) be small and compact enough. The meaning of

“small” depends on the context, but usually means the value

(e.g. length, area, and volume) of S(φ(x)) is about 1/n of the

measurements of D.

The union of all supports of basis φ should cover the entire

domain D of the points where the function F (function to

be approximated) is nonzero. The use of such bases of finite

elements to the approximation of functions concerns the so-

called Finite Element Method (FEM).

In this work, we use a special class of finite element bases,

which are defined by points (meshless) [29], [30]. In such

basis, each finite element φi has a central point xi located at

the center of S(φ(xi)). In other words, we are just centering

the basis at the point xi. Next, we present the basis used in

this work, which is quite popular in the context FEM.

1) Shepard Basis: In the Shepard basis [31], each element

is defined as follows:

φi(x) =
w(x, xi)

∑n

j=1
w(x, xj)

, (12)

where w : D × D → ℜ is a non-negative function, such

that w(x, xi) → ∞ when x → xi. Roughly speaking, the

closer is x from xi, the larger is the value of function w. Such

property implies that a Shepard basis holds the interpolating

and partition of unity assumptions.

Usually, function w is chosen as a power k ≥ 1 of the

inverse of the Euclidean distance, as follows:

w(x, xi) =
1

|x, xi|
k
, (13)

where |x, xi| denotes the Euclidean distance between x and

xi. Notice parameter k controls the smoothness of the inter-

polation process, and it should be chosen according to the

user needs. Figure 1 shows different Shepard bases using

three values of k. One can observe the behaviour of the basis

centered at the black dots according to different values of k:

the greater the value of k, the more sloppy is the function.

Clearly, k = 1 results in a steep function.

(a) (b)

(c)

Fig. 1. Behaviour of different Shepard bases according to three values of k,
where the black dots stand for the center of the basis: (a) k = 1, (b) k = 3
and (c) k = 5.

Figure 2 depicts some interpolated functions using FEM

with Shepard basis. Analogously to the behaviour of the afore-

mentioned basis, the interpolated functions tend to become less

smooth. Once more, the rectangles stand for the center of the

basis.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(a) (b)

(c)

Fig. 2. Interpolated function using the Shepard basis for (a) k = 1, (b) k = 3
and (c) k = 5. The blue rectangles represent the center of the basis and their
sampled values.

III. FINITE ELEMENT MACHINE

In this section, we present the Finite Element Machine

classifier, as well as how it can cope with the problem of

supervised pattern classification efficiently.

A. Background Theory

Let Z = Z1 ∪ Z2 be a dataset partitioned into a training

(Z1) and a test (Z2) set. In this case, the pair (xi, yi) ∈ Z
denotes the feature vector xi ∈ ℜm extracted from sample i,
and yi stands for its label. Notice we adopted the very same

formulation used in the previous section, i.e. a point in FEM

formulation stands for a sample in FEMa.

Roughly speaking, FEMa learns a set of probability func-

tions P(x) = {P1(x), P2(x), . . . , Pc(x)}, where c stands for

the number of classes, and Pi(x) represents the probability of a

given sample x to be assigned to class i. In other words, FEMa

aims at learning a probabilistic manifold from the training set.

B. Probabilistic Manifold Learning

Depending on the basis function used to interpolate points,

FEMa does not require a training step, which turns out to

be quite interesting when dealing with big data. Precisely,

this assumption is true concerning bases that are natively

interpolating, such as Shepard basis. On the other hand, with

respect to non-interpolating basis, e.g. radial functions, one

needs to compute Z−1 in Equation 7. Also, if the basis

function does not hold the partition of unity property, one shall

compute Equation 11 either. Therefore, although FEMa can

be used with any basis function, we shed light over that bases

holding both the interpolating and partition of unity properties

are much more appealing when dealing with massive amount

of data. As such, we can consider the calculation of Z−1 and

Equation 11 as the training steps when using non-interpolating

and non-partition of units bases.

Assuming we are using an interpolating and partition of

unity basis (e.g Shepard), we can move to the classification

step. Given a sample x ∈ Z2, we need to compute its

probability of belonging to each class i, i = 1, 2, . . . , c, as

follows:

Pi(x) =

|Z1|
∑

j=1

ρjiφj(x), (14)

where ρji ∈ [0, 1] stands for the probability of training sample

j belonging to class i. An interesting property concerning

FEMa relates to the possibility in assigning a probability to

each training sample, which means we have an uncertainty

associated to those samples, thus having an important role

when dealing with data overfitting. This capability is extremely

important in medical-driven applications, where physicians

usually have different opinions with respect to the very same

data (e.g. cancer detection in images).

The probability ρji ∈ [0, 1] can be computed using the

following formulation:

ρji =

{

1 if yj = i
0 otherwise.

(15)

Since we have labeled datasets (i.e. we are assuming the label-

ing process is errorless), we can use ρji ∈ {0, 1}. Therefore, we

generate the set of probabilities P(x) for each sample x ∈ Z2.

In short, FEMa classifies a given sample x ∈ Z2 as

belonging to the class ŷ that satisfies the above equation:

ŷ = argmax
i

Pi(x). (16)

Also, FEMa allows us to infer the certainty C(x) as follows:

C(x) =
Pŷ(x)

∑c

j=1
Pj(x)

. (17)

Therefore, FEMa can produce both hard and soft (probability)

outputs without any modification. Figure 3 illustrates the

process of learning the probability functions of each class

in a one-dimensional and two-class problem. For the sake of

explanation, the x-axis stands for a test set with samples within

the interval [−3, 3], and the y-axis denotes their probability

values with respect to the class 1 (Figure 3a) and class 2
(Figure 3b). Also, the red dots stand for the training samples,

i.e. the centers of the basis functions.

Let us consider a test sample with value −2 in Figure 3c. As

one can observe, such sample has been used as a center for the

basis function in Figure 3a already (it is a training sample). In

this case, the classification process will assign class 1 to this

sample, since P1(−2) ≈ 1, and P2(−2) ≈ 0. Now, consider a

sample with value 2 that does not belong to the training set,

i.e. it is not a basis center. In this case, P1(2) ≈ 0.15 and

P2(2) ≈ 0.85, which leads FEMa to assign class 2 to that

sample.

C. Toy Example

In this section, we present the FEMa working mechanism

on a bidimensional classification problem. Figure 4a shows a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a) (b)

(c)

Fig. 3. The Shepard approximation of the probability function of a two-class
problem using k = 3 considering a given sample x: (a) P1(x) and (b) P2(x).
The red dots and the red curve denote the samples and the probability function
of class 1, respectively, and the black dots and the black curve stand for the
samples and the probability function of class 2, respectively. In (c), we have
the two probability functions together. Notice each real number in [−3, 3]
(i.e. x-axis) is classified according to the class that has the higher probability
value (i.e. y-axis).

training set with samples distributed over three classes (red,

green and blue). The task is to verify the influence region of

each training sample in the image domain, i.e. to classify the

remaining points (white ones) in the image frame displayed

in Figure 4a. In this case, the feature of each sample (point)

is just its (x, y)-position.

(a) (b)

(c) (d)

Fig. 4. FEMa working mechanism: (a) training set with samples distributed
in three classes, and the image classified by FEMa using (b) k = 1, (c) k = 3
and (d) k = 5.

Figures 4b, 4c and 4d depict the image frame classified by

FEMa using the Shepard basis with k = 1, k = 3 and k =
5, respectively. Since we are using the (x, y) coordinates to

describe each sample, the labeled image refers to the influence

region of each training sample, which ends up generating the

boundaries of each class. Notice that FEMa can obtain quite

good and smooth decision boundaries for different values of

k (Equation 13). As matter of fact, the larger the value of k,

the less points will influence the interpolating process of the

probability function. For the sake of clarification purposes,

when k → ∞, FEMa tends to behave similarly to the well-

known nearest neighbor classifier.

Figure 5a displays the degree of certainty (Equation 17)

computed by FEMa with k = 3 for each test sample with

respect to Figure 4a. The brighter the pixel, the greater its

degree of certainty to be assigned to some class. Notice the

darker pixels fall in the boundary among classes (Figure 4c).

Figure 5b represents each test sample by its label color

weighted by its degree of certainty.

(a) (b)

Fig. 5. Probability map (degree of certainty) computed by FEMa in (a), and
the test samples with their class label weighted by their respective degree of
certainty.

D. Complexity Analysis

As aforementioned, depending on the basis function used to

build the probabilistic manifold (i.e. interpolating and partition

of unity properties), FEMa does not require an explicit training

step, since we just need to place the training points, thus taking

θ(1). However, if one uses a non-interpolating basis function,

we need to compute the inverse matrix Z−1 in Equation 7,

which requires θ(|Z1|
2.37

) using the Coppersmith-Winograd

algorithm [32].

In regard to the classification phase, for each test sample

x, we need to compute Equation 12, which requires θ(|Z1|).
However, the denominator of such equation considers all

training samples, thus becoming a constant, and we need to

compute it only once. Since the test set contains |Z2| samples,

the overall classification phase takes θ(|Z1| + |Z1| |Z2|) ∈
θ(|Z1| . |Z2|). Therefore, by using an interpolating basis func-

tion, the whole FEMa learning and classification processes

require a quadratic complexity with respect to the train-

ing/testing set size (i.e. when |Z1| = |Z2|).
However, when we have unbalanced datasets, samples from

the majority classes will have a stronger influence when

computing the probability functions. Suppose a two-class

classification problem, i.e. we have samples from the posi-

tive and negative samples. Also, suppose samples from the

negative class comprise only 1% of the number of positive

samples. When we are computing the probability function

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

of test sample, the positive samples will play a major role

during this computation process. In order to overcome this

problem, we can use only the T nearest training samples

from each class, where T ∈ O(α) and α stands for the

number of elements from the smallest class1. In this case,

since we need to sort the training samples according to their

distances for each test sample, the classification phase now

takes θ((|Z1| log |Z1|). |Z2|). Notice we can make it better by

using some special data structures, such as kd-trees, which

require θ(|Z1| log |Z1|) for loading the whole data only once

during training. Now, with respect to the classification phase,

we do not need the sorting step, since to obtain the nearest T
samples takes O(T. log |Z1|), and thus the classification phase

requires θ((T. log |Z1|). |Z2|).

IV. EXPERIMENTS

In this section, we present the methodology and the exper-

iments used to asses the robustness and efficiency of FEMa

against six other classifiers: (i) ANN trained with Backpropa-

tion, (ii) Bayes, (iii) EPNN, (iv) OPF, (v) k-NN (k-nearest

neighbors) and (vi) SVM. Such approaches were selected for

comparison purposes since they have been commonly applied

in a number of classification tasks in the literature, being some

of them referred as state-of-the-art by the machine learning

community.

In order to validate the experiments, we employed 23 public

benchmarking datasets2 that have been frequently used for the

evaluation of supervised classification methods. We divided

the dataset into two groups: (i) small datasets and (ii) medium-

to-large datasets. Tables I and II present the main characteris-

tics of the datasets concerning the small and the medium-to-

large group, respectively. The datasets were selected in order

to represent distinct scenarios, which comprise datasets with

different number of features, sizes and classes.

TABLE I
INFORMATION ABOUT THE SMALL DATASETS USED IN THE EXPERIMENTS.

Dataset # samples # features # classes

australian 690 14 2
boat 100 2 3
breast 683 10 2
cone-torus 400 2 3
data1 1,423 2 2
data2 283 2 2
data3 340 2 5
data4 698 2 3
data5 1,850 2 2
diabetes 768 8 2
fourclass 862 2 2
glass 214 9 6
heart 270 13 2
petals 100 2 4
saturn 200 2 2
segment 2,310 19 7
vehicle 846 18 4
wine 178 13 3

1In this paper, we use T = α.
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

TABLE II
INFORMATION ABOUT THE MEDIUM-TO-LARGE DATASETS USED IN THE

EXPERIMENTS.

Dataset # training # testing # features # classes
samples samples

a1a 1,605 30,956 123 2
a2a 2,265 30,296 123 2
a3a 3,185 29,376 123 2
a4a 4,781 27,780 123 2
a5a 6,414 26,147 123 2

Since the medium-to-large datasets are partitioned into train-

ing and testing sets already, we decided to partition the small

datasets at random using 50% for training purposes and the

remaining 50% for classification. Notice the aforementioned

protocol was repeated for both normalized and non-normalized

versions of the datasets under 15 runnings for the computation

of mean accuracy and computational load. The idea is to

verify the behavior of FEMa under such circumstance. The

normalization process is the same adopted by LibOPF [33],

which is used to implement the OPF classifier:

f̂i =
(fi − f̃i)

si
, (18)

where fi, f̃i and si are, respectively, the i-th feature, the

average of fi, and the standard deviation of fi in the dataset.

Also, f̂i stands for the normalized version of fi. In order to

compare the classification methods, we computed the mean

accuracy and standard deviation for each one. Further, we

employed the Wilcoxon signed-rank test [34] with significance

of 0.05 to provide a more robust statistical evaluation.

Methods that require fine-tuning parameters (i.e. SVM, k-

NN and EPNN) are optimized differently. In regard to SVM,

since we used a Radial Basis Function kernel, the searching

range of parameter C (optimization function) was defined

within the interval [−32, 32], while the searching range of

parameter γ (variance of the Gaussian kernel) was defined

within the interval [0, 32]. For both parameters we used a

step size of 2. With respect to k-NN, we defined the value

of k as the best value of an exhaustive search in the range

[1, |Z1|] with step size of 2 (i.e. the best value of k is the one

that maximizes the accuracy over the training set). For the

EPNN classifier, the search space of parameter σ (variance of

the Gaussian function used in the pattern layer) was defined

within [0, 1] with step size of 0.05, and the search space for the

radius was defined within [ld,md], where ld and md denote the

lowest and greatest distance among two samples. The ANN

architecture employs 4 hidden layers with 8 neurons on each,

and the number of epochs and desired error were defined as

70, 000 and 0.0001, respectively. Notice all these experimental

setup was defined empirically.

A. Small-sized Datasets

Table IV-A presents the mean recognition rates using 50%
of the datasets for training purposes without feature nor-

malization, where the most accurate results according to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Wilcoxon statistical tool are in bold. One can observe that

FEMa obtained the best results in 9 out of 18 datasets, being

the sole best technique in three situations (i.e. “breast”, “data2”

and “data3”). Additionally, concerning five other datasets

(“cone-torus”, “diabetes”, “glass”, “segment” and “wine”),

FEMa obtained recognition rates quite close to the best ones.

The worst performance appears to be in the “vehicle” dataset,

but the same has happened to all classifiers, except for SVM,

which obtained the best results for this dataset so far.

Table IV presents the mean recognition rates with non-

normalized features. Once again, FEMa obtained the best

results in 9 out 18 datasets, with recognition rates close to the

best ones in three more datasets. Actually, the only situation

that seems to be affected by non-normalized features is the

“breast” dataset, though all techniques were affected either. In

this new experiment, FEMa obtained the sole best result in

“wine” dataset only.

Table V presents the mean computational load for training

purposes. Notice we did not show the results concerning

FEMa, since it does not have training step. The most expensive

techniques are the ones that require parameter fine-tuning (i.e.

k-NN, SVM and EPNN), since we considered the time spent

on this step to the final training procedure computational load.

Our implementation of the Bayesian classifier is considerably

fast for training, since it basically consists into finding the

maximum arc-weight among training samples to be used as

a normalization factor in the exponential function (probability

estimates).

Table VI presents the mean computational load concerning

the classification time over the small-sized datasets. Clearly,

one can observe all techniques are considerably fast, since the

datasets do not comprise so many samples. In this experiment,

FEMa seems to be the slowest one, but if one considers

the whole procedure (i.e. training+classification), FEMa and

Bayes are the fastest ones, being FEMa more accurate than

Bayes in a larger number of situations.

B. Medium-to-large-sized Datasets

Table VII presents the recognition rates of the medium-

to-large datasets used in this work with normalized features,

where the best results according to Wilcoxon signed-rank

test are in bold. In this case, SVM obtained the best results

for all datasets, followed by FEMa, k-NN and Bayes. Since

the medium-to-sized datasets have a considerable number of

samples for training purposes, SVM can benefit from that,

since the samples will be mapped to a higher dimensional

space for learning the maximum-marge hyperplane. However,

its training step is too costly, as showed in Table VIII. Actually,

except for Bayes and OPF, all other classifiers required a con-

siderable computational load for training, which is prohibitive

in real-time learning systems, where the training set dynamics

changes over time. In this situation, FEMa seems to be most

suitable approach, since it does not require the training step.

Table IX presents the classification load for all techniques.

One can observe ANN as the fastest approach, since it basi-

cally needs to forward the input data to the layers computing

inner products between the activation values and the weights.

However, if one considers the whole computational time

(i.e. training+classification), Bayes was the fastest approach

followed by FEMa, though the latter being more accurate.

As aforementioned in Section III-D, FEMa uses a k-

neighborhood to compute the probability function of each test

sample to avoid problems with unbalanced datasets. By using

kd-trees, for instance, we can make FEMa faster by a factor

of |Z1| /α, where α is the number of elements of the smallest

class.

C. Discussion

The proposed FEMa classifier was compared against six

other supervised pattern recognition techniques in two distinct

scenarios: small and medium-to-large datasets. Also, with

respect to the former situation, we also considered normalized

and non-normalized datasets.

From both results, we can observe that FEMa has been

placed in the top two first positions for almost all datasets,

and it seems to not be affected by non-normalized features.

Since FEMa does not require a training step, it has been placed

as the second fastest approach (i.e. training+classification),

just behind the Bayesian classifier, which has a very fast and

simple training phase either. While FEMa has obtained the

best results in 9 datasets (Table IV), Bayes achieved the most

accurate results in 6 situations, being the sole best technique

in only one dataset (FEMa obtained the best results solely in

3 datasets).

Another interesting point about FEMa concerns its pos-

sibility to be extended, since the reader can evaluate other

basis functions to interpolate the probabilistic manifold, as

well as we can try to make FEMa even faster by means

of kd-trees, which are often used to speed up the k-nearest

neighbours classifier. Therefore, we believe a framework to

the development of pattern recognition techniques based on

Finite Element Method has been proposed, instead of a single

supervised classifier only. Since this version is parameterless,

it becomes easier to use and less prone to errors, besides being

a deterministic classifier.

V. CONCLUSIONS AND FUTURE WORKS

Supervised pattern recognition techniques have been

paramount in the last years, mainly due to the increasing

number of applications that make use of some decision-making

mechanism. Also, the number of new data available at the

internet every single day makes some techniques unfeasible

to be trained online. That is a crucial shortcoming in several

situations, such as active and semi-supervised learning, and

intrusion detection in computer networks, for instance. Recom-

mendation systems may be affected, since such models need

to be dynamic enough to handle the so-called “concept drift”,

i.e. when a user suddenly changes its expected behaviour, thus

requiring a new training procedure with the updated data.

In this paper, we proposed FEMa - A Finite Element

Machine classifier based on the Finite Element Method theory,

which has been extensively used for several purposes in

engineering and sciences, but never for classification purposes.

The main idea is to learn a probabilistic manifold built upon

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE III
MEAN CLASSIFICATION RATES USING 50% OF THE SAMPLES FOR TRAINING WITH NORMALIZED FEATURES.

Dataset ANN Bayes OPF FEMa k-NN SVM EPNN

australian 80.71 ± 2.67 78.62 ± 1.25 77.71 ± 1.71 81.61 ± 1.46 84.54± 1.06 85.46± 1.02 79.08 ± 2.96

boat 79.41 ± 7.40 96.08 ± 2.59 95.83 ± 2.67 95.59 ± 1.90 96.08 ± 2.59 99.02± 1.96 95.29 ± 2.35

breast 96.77 ± 0.96 95.30 ± 1.13 94.99 ± 1.28 97.08± 0.27 96.85 ± 0.44 90.06 ± 0.61 90.06 ± 0.61

cone-torus 62.32 ± 4.52 82.25 ± 1.56 81.66 ± 1.39 82.26 ± 1.79 82.26 ± 2.55 82.65± 4.01 81.19 ± 2.05

data1 98.97 ± 0.25 99.45 ± 0.25 99.40 ± 0.21 99.59± 0.18 99.53± 0.18 99.35 ± 0.24 99.35 ± 0.24

data2 98.16 ± 0.49 98.35 ± 0.85 98.07 ± 0.68 98.62± 0.72 98.50 ± 0.91 98.50 ± 0.76 98.03 ± 0.82

data3 91.08 ± 8.81 98.83 ± 1.01 98.55 ± 1.29 99.29± 0.58 98.74 ± 1.00 99.09 ± 0.85 90.06 ± 2.09

data4 99.50 ± 0.79 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 99.89 ± 0.14

data5 99.40 ± 1.03 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 97.73 ± 0.00

diabetes 71.78± 1.42 68.17 ± 1.79 66.92 ± 1.61 68.47 ± 1.86 66.64 ± 1.34 70.30 ± 1.11 65.68 ± 0.45

fourclass 74.68 ± 9.85 99.90± 0.14 99.45 ± 0.32 99.90± 0.14 99.94± 0.12 99.91± 0.13 98.75 ± 0.65

glass 34.79 ± 12.25 63.08± 5.59 62.65 ± 5.31 61.76 ± 6.18 58.57 ± 9.66 58.45 ± 6.21 62.49 ± 1.87

heart 77.60 ± 3.63 74.52 ± 2.93 73.02 ± 3.92 79.73 ± 2.14 82.38± 2.20 82.44± 2.01 75.26 ± 3.30

ionosphere 86.76 ± 3.25 80.45 ± 2.40 80.06 ± 2.45 60.83 ± 1.58 77.97 ± 2.90 93.51 ± 2.56 66.93 ± 0.23

petals 99.04 ± 1.36 99.28± 0.93 99.28± 0.93 99.28± 0.93 99.28± 0.93 98.56 ± 1.86 99.03 ± 0.94

saturn 58.88 ± 4.14 87.88± 3.06 87.50 ± 2.69 87.85± 3.11 87.88± 3.06 87.50 ± 3.28 86.80 ± 3.31

segment 48.29 ± 10.79 95.16 ± 0.69 94.84 ± 0.60 95.03 ± 0.56 95.16 ± 0.69 95.98± 0.78 95.48 ± 0.24

vehicle 50.16 ± 9.50 68.37 ± 1.17 67.30 ± 1.10 70.00 ± 1.33 68.18 ± 1.88 81.81± 1.29 69.29 ± 1.10

wine 94.81 ± 2.79 95.66 ± 1.48 94.85 ± 1.21 97.57 ± 1.13 96.76 ± 2.35 98.53± 0.92 93.56 ± 2.67

TABLE IV
MEAN CLASSIFICATION RATES USING 50% OF THE SAMPLES FOR TRAINING WITH NON-NORMALIZED FEATURES.

Dataset ANN Bayes OPF FEMa k-NN SVM EPNN

australian 75.61 ± 7.70 80.20 ± 2.06 79.12 ± 1.63 81.85 ± 1.99 85.53± 1.64 85.59± 1.52 80.21 ± 0.92

boat 87.75 ± 5.94 95.34 ± 2.93 94.61 ± 3.06 93.87 ± 3.97 95.34 ± 2.93 100.0± 0.0 94.02 ± 1.88

breast 50.00 ± 0.00 56.49± 1.63 56.55± 1.64 56.57± 1.59 52.95 ± 2.37 51.39 ± 1.08 54.04 ± 2.01

cone-torus 56.85 ± 23.66 81.48 ± 2.87 81.00 ± 3.12 81.55 ± 3.16 81.58 ± 3.66 84.03± 3.26 79.98 ± 1.21

data1 91.57 ± 15.78 99.45± 0.28 99.33 ± 0.42 99.45± 0.28 99.49± 0.28 99.22 ± 0.10 97.59 ± 3.85

data2 96.15 ± 3.54 98.40 ± 0.77 98.65± 0.79 98.40 ± 0.77 98.38 ± 0.85 98.65± 0.73 97.21 ± 2.07

data3 43.88 ± 22.45 99.55± 0.94 99.55± 0.94 99.55± 0.94 99.27 ± 0.87 99.27 ± 0.63 98.55 ± 0.74

data4 85.02 ± 19.50 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 99.16 ± 1.01

data5 73.77 ± 23.83 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

diabetes 63.48 ± 7.29 66.03 ± 1.43 64.92 ± 1.52 67.05 ± 1.94 66.76 ± 2.61 71.13± 2.39 68.17 ± 0.87

fourclass 80.19 ± 11.34 99.92± 0.14 99.79 ± 0.18 99.92± 0.14 99.90± 0.19 99.91± 0.13 89.99 ± 10.02

glass 32.67 ± 3.92 62.68 ± 5.07 62.68 ± 5.00 61.73 ± 4.85 52.47 ± 10.95 63.79± 4.62 62.98 ± 1.08

heart 74.27 ± 4.08 75.19 ± 3.00 75.21 ± 2.62 77.92 ± 2.30 82.04± 1.97 82.12± 1.95 80.74 ± 1.22

petals 98.80 ± 1.91 99.52± 1.27 99.52± 1.27 99.52± 1.27 99.52± 1.27 99.04 ± 0.96 98.94 ± 0.62

saturn 64.38 ± 11.38 89.62± 6.08 89.50± 6.16 89.68± 6.03 89.62± 6.08 89.50± 6.42 85.28 ± 3.39

segment 44.09 ± 14.78 95.43 ± 0.70 95.11 ± 0.73 95.60 ± 0.58 95.43 ± 0.70 96.09± 0.60 68.92 ± 3.05

vehicle 53.28 ± 9.48 68.28 ± 1.65 67.45 ± 1.46 68.81 ± 1.51 68.66 ± 2.17 82.71± 1.30 63.33 ± 1.35

wine 93.06 ± 5.41 96.04 ± 1.34 94.94 ± 1.80 98.09± 0.22 97.43 ± 1.34 96.17 ± 1.23 95.28 ± 2.06

TABLE V
MEAN TRAINING TIME USING 50% OF THE SAMPLES FOR TRAINING WITH NORMALIZED FEATURES.

Dataset ANN Bayes OPF k-NN SVM EPNN

australian 12.61 ± 9.63 0.00 ± 0.00 2.61 ± 0.12 0.18 ± 0.01 11.01 ± 1.32 15.22 ± 3.11

boat 1.14 ± 1.36 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.60 ± 0.03 2.10 ± 0.14

breast 18.40 ± 0.19 0.00 ± 0.00 0.97 ± 0.01 0.18 ± 0.00 3.87 ± 0.20 47.55 ± 8.43

cone-torus 11.05 ± 0.10 0.00 ± 0.00 1.02 ± 0.10 0.02 ± 0.00 4.76 ± 0.59 3.13 ± 0.88

data1 3.12 ± 3.79 0.00 ± 0.00 2.21 ± 0.07 1.47 ± 0.03 8.26 ± 0.20 3.81 ± 0.29

data2 0.17 ± 0.26 0.00 ± 0.00 0.19 ± 0.01 0.00 ± 0.00 0.82 ± 0.02 0.15 ± 0.02

data3 6.60 ± 5.21 0.00 ± 0.00 0.28 ± 0.00 0.01 ± 0.00 1.21 ± 0.02 1.68 ± 0.29

data4 3.94 ± 7.61 0.00 ± 0.00 0.41 ± 0.01 0.09 ± 0.02 2.12 ± 0.02 4.03 ± 0.97

data5 0.16 ± 0.01 0.00 ± 0.00 1.21 ± 0.02 5.06 ± 0.21 5.54 ± 0.08 0.86 ± 0.33

diabetes 21.14 ± 0.31 0.00 ± 0.00 6.29 ± 0.21 0.11 ± 0.01 26.52 ± 2.52 11.22 ± 1.08

fourclass 17.46 ± 8.52 0.00 ± 0.00 2.88 ± 0.09 0.31 ± 0.02 9.68 ± 0.24 13.22 ± 4.51

glass 8.29 ± 0.07 0.00 ± 0.00 0.27 ± 0.00 0.00 ± 0.00 1.97 ± 0.08 1.32 ± 0.11

heart 3.23 ± 3.84 0.00 ± 0.00 0.45 ± 0.04 0.01 ± 0.00 2.05 ± 0.14 4.02 ± 0.21

petals 0.01 ± 0.00 0.00 ± 0.00 0.18 ± 0.02 0.00 ± 0.00 0.59 ± 0.04 0.11 ± 0.01

saturn 5.18 ± 0.10 0.00 ± 0.00 0.49 ± 0.02 0.00 ± 0.00 2.09 ± 0.19 0.89 ± 0.07

segment 110.61 ± 4.29 0.03 ± 0.00 19.98 ± 0.22 17.93 ± 0.79 91.64 ± 3.76 298.13 ± 42.25

vehicle 32.39 ± 0.62 0.00 ± 0.00 5.96 ± 0.07 0.52 ± 0.04 20.72 ± 0.22 21.24 ± 2.14

wine 0.02 ± 0.01 0.00 ± 0.00 0.20 ± 0.00 0.00 ± 0.00 0.99 ± 0.02 0.09 ± 0.04

the training samples, which will become the center of a basis

function each. Further, the classification process simply inserts

a test sample into the manifold, and computes the probability

of that sample to belong to each class.

Experiments against six other well-known supervised pat-

tern recognition techniques showed that FEMa can obtain

very competitive results, though being considerably faster than

others, since it is parameterless and, in practice, it does not

have a training phase. Also, FEMa do not seem to be affected

by non-normalized features.

In regard to future works, we aim at extending FEMa for

clustering and regression purposes, as well as to evaluate

the influence of other basis functions. In addition, we shall

implement its optimized version based on kd-trees.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE VI
MEAN TESTING TIME.

Dataset ANN Bayes OPF EPNN FEMa KNN SVM

australian 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.15 ± 0.01 0.01 ± 0.00 0.01 ± 0.00

boat 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

breast 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.09 ± 0.00 0.01 ± 0.00 0.02 ± 0.00

cone-torus 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.00 ± 0.00

data1 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.28 ± 0.00 0.06 ± 0.01 0.01 ± 0.00

data2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

data3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

data4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.01 0.04 ± 0.00 0.01 ± 0.00

data5 0.00 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 0.17 ± 0.00 0.09 ± 0.01 0.02 ± 0.00

diabetes 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.12 ± 0.02 0.01 ± 0.00 0.01 ± 0.00

fourclass 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.10 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

glass 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

heart 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

petals 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

saturn 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00

segment 0.00 ± 0.00 0.26 ± 0.00 0.07 ± 0.00 0.21 ± 0.00 4.53 ± 0.38 0.14 ± 0.02 0.08 ± 0.01

vehicle 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.38 ± 0.03 0.03 ± 0.00 0.05 ± 0.03

wine 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

TABLE VII
RECOGNITION RATES CONCERNING THE MEDIUM-TO-LARGE DATASETS.

Dataset ANN Bayes EPNN FEMa k-NN OPF SVM

a1a 81.43 79.32 76.10 81.83 82.58 71.27 84.05

a2a 81.84 79.05 76.15 81.69 82.44 71.72 84.06

a3a 79.46 79.23 76.08 81.74 82.71 72.53 84.45

a4a 81.50 79.58 79.73 81.94 83.02 73.77 84.56

a5a 82.05 79.61 79.56 81.99 83.06 73.43 84.49

TABLE VIII
TRAINING TIME CONCERNING THE MEDIUM-TO-LARGE DATASETS.

Dataset ANN Bayes OPF EPNN k-NN SVM

a1a 477.41 ± 7.38 0.44 ± 0.04 1.60 ± 0.14 7, 439.90 ± 39.26 387.06 ± 4.00 1, 130.59 ± 8.24

a2a 706.92 ± 7.42 0.97 ± 0.07 2.72 ± 0.14 17, 758.61 ± 757.12 813.43 ± 6.59 2, 292.08 ± 12.09

a3a 964.27 ± 4.58 1.38 ± 0.03 5.76 ± 0.19 11, 336.21 ± 334.14 2, 592.87 ± 10.57 4, 557.10 ± 1.24

a4a 1, 449.42 ± 1.17 3.75 ± 0.11 12.68 ± 0.93 45, 847.83 ± 842.12 10, 470.55 ± 18.88 10, 870.21 ± 19.07

a5a 1, 926.00 ± 22.93 6.71 ± 0.23 24.36 ± 1.05 59, 763.13 ± 192.11 20, 256.74 ± 38.72 21, 870.21 ± 75.19

TABLE IX
TESTING TIME CONCERNING THE MEDIUM-TO-LARGE DATASETS.

Dataset ANN Bayes OPF EPNN FEMa KNN SVM

a1a 0.05 ± 0.00 42.21 ± 1.59 16.46 ± 0.91 41.37 ± 0.00 89.22 ± 0.00 20.01 ± 0.00 25.82 ± 0.76

a2a 0.06 ± 0.01 58.15 ± 0.36 24.12 ± 1.83 55.34 ± 0.00 103.46 ± 0.00 30.42 ± 1.00 41.38 ± 2.57

a3a 0.06 ± 0.01 76.48 ± 3.51 35.02 ± 2.06 74.25 ± 0.00 150.07 ± 0.00 42.36 ± 0.24 48.44 ± 1.13

a4a 0.09 ± 0.01 108.04 ± 1.44 47.92 ± 1.96 128.91 ± 0.00 168.16 ± 0.00 60.81 ± 0.88 69.12 ± 0.21

a5a 0.05 ± 0.01 140.97 ± 7.23 58.49 ± 2.66 207.23 ± 0.00 239.13 ± 1.39 92.74 ± 1.66 108.98 ± 5.23

ACKNOWLEDGMENT

The authors are grateful to FAPESP grant #2014/16250-9,

FAPESP/OSU grant #2015/50319-9, as well as CNPq grant

#306166/2014-3.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[2] S. L. Hung and H. Adeli, “Parallel backpropagation learning algorithms
on {CRAY} y-mp8/864 supercomputer,” Neurocomputing, vol. 5, no. 6,
pp. 287–302, 1993, backpropagation, Part {II}.

[3] H. Adeli and S.-L. Hung, Machine Learning: Neural Networks, Genetic

Algorithms, and Fuzzy Systems. New York, NY, USA: John Wiley &
Sons, Inc., 1994.

[4] C. T. Lin, M. Prasad, and A. Saxena, “An improved polynomial neural
network classifier using real-coded genetic algorithm,” IEEE Transac-

tions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 11, pp.
1389–1401, 2015.

[5] C. M. Lin and E. A. Boldbaatar, “Autolanding control using recurrent
wavelet elman neural network,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 45, no. 9, pp. 1281–1291, 2015.

[6] P. Liu, Z. Zeng, and J. Wang, “Multistability of recurrent neural networks
with nonmonotonic activation functions and mixed time delays,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 4,
pp. 512–523, 2016.

[7] H. Adeli and S.-L. Hung, “An adaptive conjugate gradient learning
algorithm for effective training of multilayer neural networks,” Applied

Mathematics and Computation, vol. 62, pp. 81–102, 1994.

[8] ——, “A concurrent adaptive conjugate gradient learning algorithm on
MIMD machines,” Journal of Supercomputer Applications, vol. 7, pp.
155–166, 1993.

[9] J. S. Chou and A. D. Pham, “Smart artificial firefly colony-based
support vector regression for enhanced forecasting in civil engineering,”
Computer-Aided Civil and Infrastructure Engineering, vol. 30, no. 9,
pp. 715–732, 2015.

[10] Y. LeCun, Y.Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[11] M. H. Rafiei and H. Adeli, “A novel machine learning model for
estimation of sale prices of real estate units,” Construction Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

and Management, vol. 142, 2016.
[12] J. P. Papa and A. X. Falcão, “A new variant of the optimum-path

forest classifier,” in Advances in Visual Computing, ser. Lecture Notes
in Computer Science, G. Bebis, R. Boyle, B. Parvin, D. Koracin,
P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun,
T.-M. Rhyne, and L. Monroe, Eds. Springer Berlin Heidelberg, 2008,
vol. 5358, pp. 935–944.

[13] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki, “Supervised pattern
classification based on optimum-path forest,” International Journal of

Imaging Systems and Technology, vol. 19, no. 2, pp. 120–131, 2009.
[14] J. P. Papa, A. X. Falcão, V. H. C. Albuquerque, and J. M. R. S.

Tavares, “Efficient supervised optimum-path forest classification for
large datasets,” Pattern Recognition, vol. 45, no. 1, pp. 512–520, 2012.

[15] J. P. Papa, S. E. N. Fernandes, and A. X. Falcão, “Optimum-path forest
based on k-connectivity: Theory and applications,” Pattern Recognition

Letters, vol. 87, pp. 117–126, 2017.
[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-

sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[17] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the marquardt algorithm,” IEEE Transactions on Neural Networks,
vol. 5, no. 6, pp. 989–993, 1994.

[18] Q. Liu and J. Wang, “A one-layer recurrent neural network for con-
strained nonsmooth optimization,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 41, no. 5, pp. 1323–1333,
2011.

[19] C. T. Lin, M. Prasad, and A. Saxena, “An improved polynomial neural
network classifier using real-coded genetic algorithm,” IEEE Transac-

tions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 11, pp.
1389–1401, 2015.

[20] N. Martinel, C. Micheloni, and G. L. Foresti, “The evolution of neural
learning systems: A novel architecture combining the strengths of NTs,
CNNs, and ELMs,” IEEE Systems, Man, and Cybernetics Magazine,
vol. 1, no. 3, pp. 17–26, 2015.

[21] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3,
no. 1, pp. 109–118, 1990.

[22] M. Ahmadlou and H. Adeli, “Enhanced probabilistic neural network
with local decision circles: A robust classifier,” Integrated Computer-

Aided Engineering, vol. 17, no. 3, pp. 197–210, 2010.
[23] H. Adeli and A. Panakkat, “A probabilistic neural network for earthquake

magnitude prediction,” Neural Networks, vol. 22, pp. 1018–1024, 2009.
[24] Z. Sankari and H. Adeli, “Probabilistic neural networks for eeg-based

diagnosis of alzheimer’s disease using conventional and wavelet coher-
ence,” Journal of Neuroscience Methods, vol. 197, pp. 165–170, 2011.

[25] ——, “Probabilistic neural networks for diagnosis of alzheimer’s disease
using conventional and wavelet coherence,” Journal of Neuroscience

Methods, vol. 197, no. 1, pp. 165–170, 2011.
[26] T. J. Hirschauer, H. Adeli, and J. A. Buford, “Computer-aided diagnosis

of parkinson’s disease using enhanced probabilistic neural network,”
Journal of Medical Systems, vol. 39, no. 11, pp. 1–12, 2015.

[27] O. C. Zienkiewicz and Y. K. Cheung, The Finite Element Method in

Structural and Continuum Mechanics. McGraw-Hill, 1967.
[28] G. Yu and H. Adeli, “Object-oriented finite element analysis using EER

model,” Journal of Structural Engineering, vol. 119, pp. 2763–2781,
1993.

[29] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. Sillion,
and T. Aila, “A meshless hierarchical representation for light transport,”
ACM Trans. Graph., vol. 27, no. 3, 2008.

[30] D. R. Pereira, J. Stolfi, and A. Gomide, “Comparison of finite element
bases for global illumination in image synthesis,” in 23rd SIBGRAPI

Conference on Graphics, Patterns and Images. IEEE Computer Society,
2010, pp. 287–294.

[31] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 23rd ACM national conference.
ACM Press, 1968, pp. 517–524.

[32] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” Journal of Symbolic Computation, vol. 9, pp. 251–280,
1990.

[33] J. P. Papa, C. T. N. Suzuki, and A. X, “LibOPF: A library for the design
of optimum-path forest classifiers,” software version 2.1 available at
http://www.ic.unicamp.br/ afalcao/libopf/index.html.

[34] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

