
ENGINEERING

expand as they propagate along Z
and, although their centers drift
apart, there is the distinct possibility
that they will never be completely
separated. Roughly speaking, we ex-
pect the beams to remain more or
less collimated between z = 0 and z =
D2/�, the Rayleigh range2 for a beam
of diameter D and wavelength �. If
at the Rayleigh range the distance
between the beam centers is greater
than D, the beams should be separa-
ble; otherwise their drifting apart will
go hand in hand with their expan-

sion, and the beams remain entangled as
they propagate beyond the Rayleigh range.
The necessary condition for separability is
thus (D2/�)�� > D, or equivalently,

D�kx > 2�. (1)

The lower bound 2� on the product of D
and �kx appearing in Ineq. (1) is not ex-
act, but depends on the definition of beam
diameter D and the adopted criterion for
separability, which are typically imprecise.
For all practical purposes, the number ap-
pearing on the right-hand side of Ineq. (1)
should be on the order of unity, say,
greater than 1 but less than 10.

Invoking the quantum nature of light,
if the aperture diameter D is interpreted as
a measure of the uncertainty �x about the
photon position along X, while �kx is re-
lated (through the relation p = -hk) to the
linear momentum uncertainty �px along
the same axis, then Ineq. (1) is equivalent
to Heisenberg’s uncertainty relation 
�x �px > h.

Figure 2 shows the intensity and phase
profiles of two plane waves as well as those
of their superposition at the aperture de-
picted in Fig. 1 (diameter D = 500�). The
phase distributions in Figs. 2(b) and 2(d)
indicate that one of the beams is slightly
tilted towards the upper right corner of
the XY-plane, while the other is tilted by
an equal amount towards the lower left
corner. The angular separation between
these beams is �� = 0.23° = 0.004 radians.
The combined beam’s intensity distribu-
tion in Fig. 2(e) reveals the angular separa-
tion of the two superimposed beams
through a tell-tale fringe pattern.
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In the classical electromagnetic the-
ory the wave-vector k = (2�/�)�

underlies the Fourier space of propa-
gating (or radiative) fields. The k-
vector combines into a single entity
the wavelength � and the unit vector
� that signifies the beam’s propaga-
tion direction. The Fourier trans-
form relation between the three-di-
mensional space of everyday experi-
ence and the space of the wave-vec-
tors (the so-called k-space) gives rise
to relationships between the two do-
mains analogous to Heisenberg’s un-
certainty relations.

Considering that in quantum theory
the electromagnetic k-vector is propor-
tional to the photon’s momentum1

(p = -hk , where  -h = h /2�, h being the
Planck constant), one should not be sur-
prised to find relationships between di-
mensions of a beam in the XYZ-space and
its momentum spread in the k-space. Such
relationships impose fundamental limits
on the ability of measurement systems to
determine the various properties of elec-
tromagnetic fields.

In this article we address two problems
that have widespread applications in opti-
cal metrology, spectroscopy, telecommu-
nications, etc., and discuss the constraints
imposed by the uncertainty principle on
these problems. The first topic of discus-
sion is the separation of two overlapping
beams of identical wavelength having
slightly different propagation directions.
This will be followed by an analysis of the
limits of separating co-propagating beams
having slightly different wavelengths.

Angular separation
and the limit of resolvability
Figure 1 shows an aperture of diameter D,
which transmits two plane waves of the
same wavelength � propagating in slightly
different directions. Denoting the angular
separation between the beams by ��, we
find that the projections of the two k-vec-
tors along the X-axis differ by �kx ≈
(2�/�)��. In geometrical optics, rays
propagate along straight lines and, there-
fore, the two beams must separate from
each other after a certain propagation dis-
tance. In wave optics, however, the beams
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Figure 1. Two beams of the same wavelength �,
propagating in slightly different directions, pass
through an aperture of diameter D.The angle be-
tween the two k-vectors is ��, giving rise to �kx ≈
(2�/�)��.The beams separate from each other at
the observation plane located a distance z from
the aperture, provided the uncertainty relation 
D�kx ≥ 2� is satisfied.

Figure 2. Plots of intensity (left) and phase (right)
at the entrance aperture of the system of Fig. 1.
Two uniform beams, one propagating with a slight
tilt toward the upper right, another with a slight
tilt toward the lower left, enter a D = 500� aper-
ture.The angular separation of the beams is �� =
0.23º.The individual beams are shown in the top
(a, b) and the middle (c, d) rows; their superposi-
tion appears at the bottom (e, f ).
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use a high-NA lens, thus enhancing
the polarization effects. The short-
est focal length f is obtained when
the NA of the lens is close to unity,
that is, f ≈ 1_

2D. Figure 5 shows com-
puted plots of intensity distribution
at the focal plane of an NA = 0.99,
f = 250� lens, when the incident
beam is the two-beam superposi-
tion depicted in Fig. 2.3 The three
columns of Fig. 5 represent three
different polarization states. In (a)
both incident beams are linearly po-
larized along X, which explains the
elongation of the spots in this par-
ticular direction. In (b) the two
beams are linearly polarized at 45°
to the X- and Y-axes, i.e., the direc-
tion along which the spots are sepa-
rated from each other. The plot in
(c) corresponds to the case when
both beams are circularly polarized.
Frames (d)-(f) are the logarithmic
versions of those in (a)-(c), showing
their detailed structure by empha-
sizing the weaker regions. Since the
assumed values of D = 500� and ��
= 0.004 rad satisfy the uncertainty
relation in Ineq. (1), the focused
spots are seen to be resolved irre-
spective of their polarization state.

Angular discrimination by 
means of a Fabry-Pérot etalon
Another device that can, in principle, ac-
complish the separation of two beams via
angular discrimination is a Fabry-Pérot
etalon,4,5 such as that shown in Fig. 6. This
particular etalon is tuned to transmit a
plane wave of � = 633 nm at the incidence
angle of � = 45°. Figure 7 shows the
etalon’s computed reflection and transmis-
sion coefficients, rs = |rs|exp (i�rs) and ts =
|ts| exp(i�ts), versus � for an s-polarized
plane-wave of � = 633 nm. It turns out
that the shapes of the transfer functions
|rs (�)| and |ts(�)| are not quite suitable 
for complete separation of two finite-
diameter beams of differing propagation
directions.

Computed plots of intensity distribu-
tion in Fig. 8 confirm that the etalon of
Fig. 6 can only partially separate two
beams of diameter D = 2 � 104� and angu-
lar separation �� = 0.115° = 0.002 rad,
even though the value of D (��/�) = 40 in
this case amply satisfies Ineq. (1). Figure
8(a) shows the incident pattern of intensi-
ty distribution of the superposed beams
upon arriving at the etalon. One of these

When the composite beam
(whose intensity and phase distribu-
tions are shown in Figs. 2(e, f)) is
propagated along the Z-axis, one ob-
tains at various distances from the
aperture the intensity patterns dis-
played in Fig. 3.3 It is seen in these
pictures that the two constituent
beams continue to overlap at first,
giving rise to interesting interference
patterns. After a sufficient propaga-
tion distance, however, the beams
separate and go their own ways. The
assumed value of D �kx in this ex-
ample is 4�, which satisfies Ineq. (1).

Separating two beams
by means of a lens
In the preceding section it was
demonstrated that  separating two
beams of a certain angular distance
�� requires a minimum beam diam-
eter D in accordance with Ineq. (1).
It may be asked whether a similar
limitation exists on the propagation
distance z before the individual
beams can be resolved. Apparently
no physical law limits the required
distance z, although practical con-
siderations seem to impose certain
constraints. In free space, the re-
quired propagation distance is typi-
cally less than or equal to the Rayleigh
range, D2/�, but one can substantially re-
duce this distance by employing a lens, as
shown in Fig. 4. Here two overlapping
beams of diameter D and angular separa-
tion �� are resolved after going through
an aberration-free lens. In the focal plane
of the lens the center-to-center spacing of
the focused spots is f ��, which must be
greater than the Airy disk4 radius of ~
0.6�/NA = 1.2 f �/D. Note that the resolv-
ability criterion is independent of f and
NA, requiring only that D (��/�) > 1.2,
which is a statement of the uncertainty
principle in the present context. The re-
quired propagation distance f in this ex-
ample can be much less than that needed
in the case of free-space propagation of
Fig. 1. It must be emphasized that the un-
certainty principle does not impose any
constraints on z, the requirement for re-
solvability being only a restriction on the
product of D and ��.

An interesting feature of separating
two beams by means of a lens is the result-
ing dependence of the focused spots on
the state of polarization. To reduce the re-
quired propagation distance z, one may

Figure 3.Two overlapping plane waves depicted in
Fig. 2 propagate along the Z-axis. The various in-
tensity patterns in frames (a) to (o) are obtained at
z/(103�) = 1, 2, 3, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 125, and 150, respectively. Initially the beams
strongly interfere with each other, but as propaga-
tion proceeds, they separate and exhibit their indi-
vidual identities.

Figure 4.Two identical beams of diameter D and
angular separation �� may be isolated after going
through an aberration-free lens. In the focal plane,
the distance between the focused spots is f ��,
which must be greater than the Airy disk radius of
1.2 f �/D if the individual spots are to be resolved.
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this case the beam diameter
D turns out to be irrelevant,
but the available propagation
distance z is critical for iso-
lating the individual beams.

A straightforward method
of separating two beams of
differing wavelengths is
shown in Fig. 9. This Mach-
Zehnder interferometer4

splits each input beam into
two equal halves, provides a
separate path for each half,
then recombines the halves
into a single beam at the out-
put. For one of the wave-
lengths, say, �1, the path-
length difference �z between
the two arms of the device

may be an integer-multiple of �1, in which
case the corresponding half-beams inter-
fere constructively and emerge from one
exit channel of the interferometer. For the
other wavelength, �2, the path-length dif-
ference may be a half-integer-multiple of
�2, in which case interference will be de-
structive and the beam will emerge from a
different exit channel of the device. There-
fore, separability condition for this inter-
ferometer is �z/�1 - �z/�2 = 1_

2 , or

�z �kz ≈ 2� �z ��/�2 = �. (2)

Figure 10 shows computed detector signals
S1, S2 of the system of Fig. 9 versus the in-
put wavelength in the vicinity of � = 633
nm.3 For the particular path-length differ-
ence chosen in this example (�z = 1.266
mm), it is observed that, in compliance
with Eq. (2), a pair of beams having �� =
0.158 nm can be readily separated from
each other.

An alternative form of the uncertainty
relation may be obtained in this case by in-
voking the quantum mechanical relation
between the magnitude k of the wave-vec-
tor and the photon energy E = h	, namely,
k = 2�/� = 2�	/c = E/-hc. For two beams of
wavelengths � and � + ��, co-propagating
in the Z direction, �kz = �E/-hc. Also �z =
c�t , where c is the speed of light and �t is
the time needed for light to travel a dis-
tance �z in free space. The product �z �kz
is thus proportional to �E �t, with -h being
the proportionality constant. One may
thus reinterpret Eq. (2) as a statement of
the time-versus-energy uncertainty. When
the observations are made in a transparent
medium of refractive index n > 1, the in-
crease of the k-vector by a factor of n dic-
tates a corresponding decrease in �z. This

beams propagates along the
direction that makes a 45° an-
gle with the etalon’s surface
normal, while the other devi-
ates from this direction by ��
= 0.115°. The reflected inten-
sity profile depicted in Fig.
8(b) contains mostly the latter
beam, plus a small fraction of
the former. This is due to the
imperfect transfer function of
the etalon, which cannot fully
transmit the angular spec-
trum of the 45° beam, nor can
it fully reflect the spectrum of
the 45.115° beam. Either
beam’s angular spectrum has
a width of ~�/D ≈ 0.003°,
which would readily pass
through a narrow rectangular transfer
function, but is partially blocked by the
sharply peaked transfer functions of the
etalon (see Fig. 7(a)). The same arguments
apply to the transmitted intensity distrib-
ution shown in Fig. 8(c) which, although
primarily composed of the 45° incident
beam, still contains a fraction of the
45.115° beam.3

To summarize the results of this and
the preceding sections, there are several
ways of separating two overlapping beams
of the same wavelength and differing
propagation directions. Some of these
methods may be more effective than oth-
ers, but none could violate the uncertainty
relation given by Ineq. (1). Moreover,
Ineq. (1) remains valid even if the beams
are observed within a transparent medi-
um of refractive index n > 1. For instance,
in Fig. 1 if the region to the right of the
aperture happens to be filled with such a
medium, the angular separation �� of the
beams shrinks by a factor n upon entering
the medium, but the length of the k-vector
increases by the same factor, thus preserv-
ing the magnitude of �kx. Similarly, in 
Fig. 4 if the index of the medium on the
right-hand-side of the lens happens to be
n, the focused spot diameters will be n
times smaller, but their center-to-center
spacing will also be reduced by the same
factor, resulting once again in the preser-
vation of Ineq. (1).

Co-propagating beams
of differing wavelengths
A problem of general interest in spec-
troscopy is that of separating two beams
of slightly different wavelengths, �1 and
�2, propagating in the same direction. In
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Figure 6. Fabry-Pérot etalon designed for opera-
tion at � = 633 nm, � = 45°. Dielectric mirrors
each contain six pairs of high/low-index layers 
(n1 = 2.0, d1 = 84.6 nm; n2 = 1.5, d2 = 119.6 nm).
Both mirror substrates are glass (nsub = 1.5), and
the medium separating the mirrors is air (dair =
55.95 
m).The incidence angle on the etalon is in
the vicinity of � = 45°; within the substrate, how-
ever, the angle of incidence on the stack is close to
�� = 28.1255° (sin� = nsub sin��). The etalon can
separate two beams of identical � arriving through
an aperture of diameter D, but differing in propa-
gation direction, namely, �1 = 45°, �2 = 45° + ��.
One beam is reflected by the etalon while the oth-
er is transmitted. Only s-polarized light is consid-
ered here, although p-polarized beams exhibit sim-
ilar behavior.

Figure 5.Total electric field intensity distribution
(|E |2 = |Ex|2 + |Ey|2 + |Ez|2) at the focal plane of a
0.99NA lens. (Rainbow colors: red = maximum,
blue = minimum).The beam at the entrance pupil is
the superposition of two D = 500� beams of angu-
lar separation �� = 0.23°, as shown in Fig. 2. In (a)
the assumed polarization state of both incident
beams is linear along the X-axis. In (b) the two
beams are linearly polarized at 45° to the X-axis,
i.e., along the direction of separation of the spots. In
(c) one of the beams is right-circularly polarized,
while the other is left-circularly polarized. Frames
(d)-(f) in the bottom row are the logarithmic ver-
sions of frames (a)-(c) in the top row. Like an over-
exposed photographic plate, a logarithmic plot re-
veals weak regions of an intensity distribution.



ENGINEERING

January 2002  � Optics & Photonics News 47

finition, kz = 2�/� and, therefore, �kz =
2���/�2. Figure 12 shows the above
beams arriving at an incidence angle 0° ≤ �
< 90° on a grating of period P. The N th

diffracted order emerges from the grating
at an angle ��, in accordance with Bragg’s
law,4,5

sin�� = sin� +N � /P, (3a)

which yields,

cos�� ��� = (N /P)��. (3b)

Now, the emergent beam diameter is D� =
D |cos��/cos�|. Since the lens is expected to
resolve the two wavelengths, Ineq. (1) re-
quires that |���| ≥ �/D�, which leads to
|cos�����| ≥ � cos�/D, which in turn leads

is consistent with the reduced speed of
light in the medium of index n, which
yields the same travel time �t for the
shorter propagation distance �z/n. Need-
less to say, �E = h�	 is independent of n.

Wavelength discrimination
using a Fabry-Pérot etalon
The etalon of Fig. 6 may also be used to
separate co-propagating beams of slightly
different wavelengths, say, � and � + ��.
Figure 11 shows computed plots of reflec-
tion and transmission coefficients versus
� for a resonator having an air gap dair =
55.95 
m. From Eq. (2) at � = 633 nm,
considering that �z = 2daircos(45°) =
79.125 
m, we find �� = 2.53 nm, in
agreement with the peak-to-valley dis-
tance in the simulated results of Fig. 11.
The figure, however, indicates the feasibil-
ity of resolving beams with a smaller �� as
well; this is due to the high finesse of the
Fabry-Pérot etalon. In other words, multi-
ple back and forth reflections within the
etalon’s cavity build up an optical field
whose amplitude is G times stronger than

Figure 9.The Mach-Zehnder interferometer can
be used to separate two beams of differing wave-
lengths, �1 and �2.The beams have identical diame-
ters and arrive in the same direction. The two
beams are split equally at the first 50/50 splitter,
travel the two arms of the device, and are recom-
bined at the second 50/50 splitter.The lengths of
the two arms of the interferometer differ by �z.
When �z/�1 – �z/�2 = 1⁄ 2, constructive interfer-
ence at the second beam-splitter for one of the
two wavelengths coincides with destructive inter-
ference for the other.The beams are thus separat-
ed at the second splitter, one is captured by detec-
tor 1, the other by detector 2. The 45° mirrors
(three in each arm) have a reflectivity of 90%, re-
sulting in an overall system transmission of 73%.
The 50/50 splitters are identical, each consisting of
a glass substrate coated with a six-layer dielectric
stack as follows:

(Substrate, nsub = 1.5) / (d1 = 30 nm, n1 = 2.64) / 
(d2 = 140 nm, n2 = 1.76) / (d3 = 50 nm, n3 = 2.64) /
(d4 = 105 nm, n4 = 1.76) / (d5 = 60 nm, n5 = 2.64) /
(d6 = 100 nm, n6 = 1.76) / Air

Although the above stack works for both p- and 
s-polarized light, its splitting ratio is much closer to
50/50 for s-light than for p-light. In our simulations
the polarization state of the incident beam was
fixed at s.

Figure 8.Two overlapping beams of uniform am-
plitude and circular cross-section (� = 633 nm,D =
2 x 104�) arrive at the etalon of Fig. 6. One beam
travels at � = 45° relative to the etalon’s surface
normal, the other at � = 45.115°. (a) Intensity dis-
tribution of the superposed beams at the entrance
aperture. (b) Reflected intensity distribution, con-
sisting mainly of the second beam plus a small frac-
tion of the first. (c) Transmitted intensity distribu-
tion, consisting mostly of the first beam plus a
small fraction of the second.

Figure 7. Computed reflection and transmission
coefficients versus the incidence angle � for the
etalon of Fig. 6 at � = 633 nm for an s-polarized
plane wave. The magnitude and phase of the re-
flection and transmission coefficients are defined
through the relations rs = |rs| exp(i�rs) and ts = 
|ts| exp(i�ts).At � = 633 nm the stack is tuned to
fully transmit at � = 45°. A small deviation from
45° incidence causes a sharp drop in |ts| and a
corresponding rise in |rs|.

that of the incident beam. (In the present
example, G is 3.0 for s-light and 1.94 for p-
light.) The effective �z is thus G times the
effective gap width, resulting in a corre-
sponding increase in the resolution of the
device.

Spectral analysis using 
a diffraction grating
Consider two co-propagating beams of
wavelengths � and � + ��, where it is as-
sumed for convenience that ��> 0. These
beams travel along the Z-axis and pass
through an aperture of diameter D. By de-
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to |N /P | �� ≥ �cos�/D. In other words,

D /cos� ≥ (�/��) |P/N |. (4a)

From Eq. (3a) it is clear that |N �/P | ≤ 2,
namely, |P/N | ≥ 1_

2�. Inequality (4a) may
thus be written as follows:

D /cos� ≥ 1_
2�2/��. (4b)

Inequality (4b) places a lower bound for
resolvability not on the beam diameter D,
but on the illuminated length of the grat-
ing, D/cos�, in the direction perpendicular
to the grooves.

Next we examine the propagation dis-
tance from the center of the entrance
aperture to the focal plane of the lens.
With reference to Fig. 12, the shortest pos-
sible distance from the entrance aperture
to the grating center is �z1 = 1_2D tan�. Sim-
ilarly, the shortest possible distance from
the grating to the lens center (ignoring the
possibility that the lens might block the
incident beam) is �z2 = 1_

2D�|tan��| =
1_
2D|sin��|/cos�. The smallest feasible focal
length for the lens is f = 1_

2D�, correspond-
ing to NA = 1. Therefore, the shortest dis-
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Figure 12. Two beams of wavelengths � and
�+��, propagating in the same direction Z, arrive
at an aperture of diameter D.The beams propagate
a distance �z1 from the center of the aperture to
a grating of period P, shining on the grating at an
angle �. One of the diffracted orders (the N th or-
der) leaves the grating at an angle ��, travels a dis-
tance �z2 (from the center of the grating to the
center of the lens), then enters a lens of focal
length f and numerical aperture NA ≈ 1. Emerging
from the grating, the two wavelengths deviate from
each other by an angle ���, thus forming separate
focused spots at the focal plane of the lens. From
the entrance aperture to the focal plane, the total
propagation distance is �z = �z1 + �z2 + f.

Figure 11. Computed plots of amplitude reflec-
tion and transmission coefficients versus � for the
Fabry-Pérot etalon depicted in Fig. 6. The air gap
and the incidence angle are fixed at dair = 
55.95 
m and � = 45°. The incident beam is p-
polarized in (a) and s-polarized in (b).

Figure 10. Computed detector signals S1 and S2
versus the input wavelength � in the Mach-Zehn-
der interferometer of Fig. 9. The assumed path-
length difference between the two arms of the 
device is �z = 1.266 mm. In the vicinity of � = 
633 nm the adjacent peaks of S1 and S2 are sepa-
rated by �� = 0.158 nm, in agreement with Eq. (2).

tance �z from the center of the entrance
aperture to the focal plane of the lens is
given by,

�z = �z1 + �z2 + f (5a)
= 1_

2(D/cos�) (sin� + |sin��| + |cos��| ).

Since sin� ≥ 0, and |sin��| + |cos��| ≥ 1 for
any ��, Eq. (5a) yields,

�z ≥ 1_
2D/cos�. (5b)

Combining Ineqs. (4b) and (5b) then
yields �z ≥ 1_

4�2/��, that is,

�z �kz ≥ 1_
2�. (6)

Note that the initial beam diameter D in
this example is not restricted at all, where-
as the propagation distance �z is required
to be greater than a certain minimum,
1_
4�2/��, to ensure resolvability of the
wavelengths � and � + ��.
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