Exercícios Resolvidos de Dinâmica Clássica

Jason Alfredo Carlson Gallas,

professor titular de fisica teórica,

Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha

Instituto de Física, Universidade Federal do Rio Grande do Sul 91501-970 Porto Alegre, BRASIL

Matéria para a QUARTA prova. Numeração conforme a quarta edição do livro "Fundamentos de Física", Halliday, Resnick e Walker.

Esta e outras listas encontram-se em: http://www.if.ufrgs.br/~jgallas

Sumário					8.1.2	Usando a Curva de Energia Po-	
						tencial	9
8	Conservação da Energia 2				8.1.3	Conservação da Energia	9
	8.1	Proble	mas e Exercícios	2	8.1.4	Trabalho Executado por Forças	
		8.1.1	Determinação da Energia Po-			de Atrito	9
			tencial	2	8.1.5	Massa e Energia	12

8 Conservação da Energia

8.1 Problemas e Exercícios

8.1.1 Determinação da Energia Potencial

E 8-1 (∄ na 6ª edição)

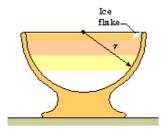
Uma determinada mola armazena 25 J de energia potencial quando sofre uma compressão de 7.5 cm. Qual a constante da mola?

ightharpoonup Como sabemos que a energia potencial elástica armazenada numa mola é $U(x)=kx^2/2$, obtemos facilmente que

$$k = \frac{2U(x)}{x^2} = \frac{2(25)}{(0.075)^2} = 8.9 \times 10^3 \text{ N/m}.$$

E 8-6 (8-3/6^a)

Um pedacinho de gelo se desprende da borda de uma taça hemisférica sem atrito com 22 cm de raio (Fig. 8-22). Com que velocidade o gelo está se movendo ao chegar ao fundo da taça?



[Fig. 8-22 Enlarged.] Exercise 6.

A única força que faz trabalho sobre o pedacinho de gelo é a força da gravidade, que é uma força conservativa.

Chamando de K_i a energia cinética do pedacinho de gelo na borda da taça, de K_f a sua energia cinética no fundo da taça, de U_i sua energia potencial da borda e de U_f sua energia potencial no fundo da taça, temos então

$$K_f + U_f = K_i + U_i$$
.

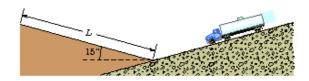
Consideremos a energia potencial no fundo da taça como sendo zero. Neste caso a energia potencial no topo vale $U_i = mgr$, onde r representa o raio da taça e m representa a massa do pedacinho de gelo. Sabemos que $K_i = 0$ pois o pedacinho de gelo parte do repouso. Chamando de v a velocidade do pedacinho de gelo ao atingir o fundo, temos então, da equação da conservação da energia acima que $mgr = mv^2/2$, o que nos fornece

$$v = \sqrt{2gr} = \sqrt{2(9.8)(0.22)} = 2.1 \text{ m/s}.$$

E 8-8 (8-13/6a)

Um caminhão desgovernado, cujo freio não está funcionando, está se movendo ladeira abaixo a 130 km/h, imediatamente antes de o motorista desviá-lo em direção a uma rampa de emergência, sem atrito e com inclinação de 15° (Fig. 8-24/4 ou 8-30/6). A massa do caminhão é de $5000~{\rm kg}$. (a) que comprimento mi nimo L a rampa deve possuir para que o caminhão pare (por um instante) ao longo dela? (Suponha que o caminhão é uma partícula e justifique esta hipótese.) O comprimento mínimo L deve aumentar, diminuir ou permanecer o mesmo se (b) for reduzida a massa do caminhão, e (c) for reduzida a sua velocidade? As rampas de escape são quase sempre cobertas com uma grossa camada de areia ou cascalho. Por quê?

Nota: o enunciado acima é o da SEXTA edição do livro, pois o enunciado da quarta edição omite o "imediatamente antes" o que impossibilita a resolução do problema. Além disto, usamos aqui o valor 130 km/h da sexta edição do livro, em vez dos 120 km/h da quarta, já que na quarta edição não é fornecida nenhuma resposta. Na quarta edição não consta a massa do caminhão.



[Fig. 8-24 Enlarged.] Exercise 8.

▶ (a) Despreze o trabalho feito por qualquer força de fricção. Neste caso a única força a realizar trabalho é a força da gravidade, uma força conservativa. Seja K_i a energia cinética do caminhão no início da rampa de escape e K_f sua energia cinética no topo da rampa. Seja U_i e U_f os respectivos valores da energia potencial no início e no topo da rampa. Se tomarmos a energia potencial como sendo zero no início da rampa, então $U_f = mgh$, onde h é a altura final do caminhão em relação à sua posição inicial. Temos que $K_i = mv^2/2$, onde v é a velocidade inicial do caminhão, e $K_f = 0$ já que o caminhão para. Então

$$K_f + U_f = K_i + U_i$$

 $0 + mhg = \frac{1}{2}mv^2 + 0,$

ou seja, $mgh = mv^2/2$, donde tiramos que

$$h = \frac{v^2}{2g} = \frac{(130 \times 10^3 / 3600)^2}{2(9.8)} = 66.53 \text{ m}.$$

Se chamarmos de L o comprimento da rampa, então teremos que L sen $15^o=h$, donde tiramos finalmente que

$$L = \frac{h}{{\rm sen} \ 15^{o}} = \frac{66.53}{{\rm sen} \ 15^{o}} = 257.06 \ {\rm m}.$$

(b) como se pode ver das equações acima, o resultado final não depende da massa do veículo, o que facilita projetar-se a rampa. (c) reduzindo-se a velocidade de entrada na rampa, reduz-se a distância mínima necessária para a freagem.

Areia ou cascalho, que se comportam neste caso como um "fluido", tem mais atrito que uma pista sólida, ajudando a diminuir mais a distância necessária para parar o veículo. Nota: você entendeu a razão da ressalva "por um instante" contida no enunciado do problema?...

E 8-10 (∄ na 6^a)

Um projétil com uma massa de 2.4 kg é disparado para cima do alto de uma colina de 125 m de altura, com uma velocidade de 150 m/s e numa direção que faz um ângulo de 41^o com a horizontal. (a) Qual a energia cinética do projétil no momento em que é disparado? (b) Qual a energia potencial do projétil no mesmo momento? Suponha que a energia potencial é nula na base da colina (y=0). (c) Determine a velocidade do projétil no momento em que atinge o solo. Supondo que a resistência do ar possa ser ignorada, as respostas acima dependem da massa do projétil?

▶ (a) Se m for a massa do projétil e v sua velocidade após o lançamento, então sua energia cinética imediatamente após o lançamento é

$$K_i = \frac{1}{2}mv^2 = \frac{1}{2}(2.40)(150)^2 = 27.0 \times 10^3 \text{ J}.$$

(b) Se a energia potencial é tomada como zero quando o projétil atinge o solo e sua altura inicial acima do solo for chamada de h, então sua energia potencial inicial é

$$U_i = mgh = (2.4)(9.8)(125) = 2.94 \times 10^3 \text{ J}.$$

(c) Imediatamente antes de atingir o solo a energia potencial é zero e a energia cinética pode ser escrita como sendo $K_f=mv_f^2/2$, onde v_f é a velocidade do projétil. A energia mecânica é conservada durante o voo do projétil de modo que $K_f=mv_f^2/2=K_i+U_i$ donde tiramos facilmente que

$$\begin{array}{lcl} v_f & = & \sqrt{\frac{2(K_i+U_i)}{m}} \\ \\ & = & \sqrt{\frac{2[(27.0+2.94)\times 10^3]}{2.40}} = 159 \text{ m/s}. \end{array}$$

Os valores de K_i , K_f , U_i e U_f dependem todos da massa do projétil, porém a velocidade final v_f não depende da massa se a resistência do ar puder ser considerada desprezível.

Observe que o tal ângulo de 41º não foi usado para nada! Talvez seja por isto que este exercício já não mais apareça nas edições subsequentes do livro...

E 8-12 (8-17/6^a)

Uma bola de gude de 5 g é disparada verticalmente para cima por uma espingarda de mola. A mola deve ser comprimida de 8 cm para que a bola de gude apenas alcance um alvo situado a 20 m de distância. (a) Qual a variação da energia potencial gravitacional da bola de gude durante a subida? (b) Qual a constante da mola?

(a) Neste problema a energia potencial possui dois termos: energia potencial elástica da mola e energia potencial gravitacional.

Considere o zero da energia potencial gravitacional como sendo a posição da bola de gude quando a mola está comprimida. Então, a energia potencial gravitacional da bola de gude quando ela está no topo da órbita (i.e. no ponto mais alto) é $U_g = mgh$, onde h é a altura do ponto mais elevado. Tal altura é h = 20 + 0.08 = 20.08 m. Portanto

$$U_q = (5 \times 10^{-3})(9.8)(20.08) = 0.948 \text{ J}.$$

(b) Como a energia mecânica é conservada, a energia da mola comprimida deve ser a mesma que a energia potencial gravitacional no topo do voo. Ou seja, $kx^2/2 = mgh = U_g$, onde k é a constante da mola. Portanto,

$$k = \frac{2U_g}{x^2} = \frac{2(0.948)}{(0.08)^2} = 307.5 \text{ N/m}.$$

Observe que

$$307.5 \text{ N/m} \simeq 3.1 \times 10^2 \text{ N/m} = 3.1 \text{ N/cm}$$
.

que é a resposta oferecida pelo livro-texto.

E 8-13 (8-5/6^a)

Uma bola de massa m está presa à extremidade de uma barra de comprimento L e massa desprezível. A outra extremidade da barra é articulada, de modo que a bola pode descrever um círculo plano vertical. A barra é mantida na posição horizontal, como na Fig. 8-26, até receber um impulso para baixo suficiente para chegar ao ponto mais alto do círculo com velocidade zero. (a) Qual a variação da energia potencial da bola? (b) Qual a velocidade inicial da bola?

[Fig. # 26 Erth: ged.] Exercise 13.

▶ (a) Tome o zero da energia potencial como sendo o ponto mais baixo atingido pela bola. Como a bola está inicialmente a uma distância vertical L acima do ponto mais baixo, a energia potencial inicial é $U_i = mgL$, sendo a energia potencial final dada por $U_f = mg(2L)$. A variação da energia potencial é, portanto,

$$\Delta U = U_f - U_i = 2mgL - mgL = mgL.$$

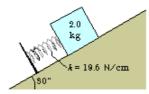
(b) A energia cinética final é zero. Chamemos de $K_i = mv^2/2$ a energia cinética inicial, onde v é a

velocidade inicial procurada. A barra não faz trabalho algum e a força da gravidade é conservativa, de modo que a energia mecânica é conservada. Isto significa que $\Delta K = -\Delta U$ ou, em outras palavras, que $-mv^2/2 = -mgL$ de modo que temos

$$v = \sqrt{2gL}$$
.

P 8-16 (8-19/6a)

Um bloco de 2 kg é encostado numa mola num plano inclinado sem atrito e com uma inclinação de 30º graus. A mola em questão, cuja constante vale 19.6 N/cm, é comprimida 20 cm sendo depois liberada. A que distância ao longo do plano inclinado é arremessado o bloco?



[Fig. 8-29 Enlarged.] Problem 16.

elástica armazenada na mola transforma-se em energia abaixo, então ℓ sen $30^o=h$, de modo que potencial gravitacional, que é usada para levantar o corpo verticalmente de uma altura h. A conservação de energia nos diz que

$$\frac{1}{2}kx^2 = mgh.$$

Portanto.

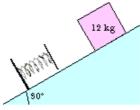
$$\begin{array}{lcl} h = \frac{kx^2}{2mg} & = & \frac{(19.6 \times 10^2)(0.2)^2}{(2)(2)(9.8)} \\ \\ & = & \frac{(10^2)(4)(10^{-2})}{2} = 2 \text{ m.} \end{array}$$

Chamando de ℓ a distância percorrida ao longo do plano, temos que $h = \ell$ sen 30° , donde tiramos a resposta procurada:

$$\ell = \frac{h}{\text{sen } 30^{\circ}} = \frac{2}{1/2} = 4 \text{ m}.$$

P 8-17 (8-21/6a)

270 N. Um bloco de 12 kg de massa é liberado a partir do repouso do alto de um plano inclinado sem atrito a mola 5.5 cm antes de parar. (a) Qual a distância total percorrida pelo bloco até parar? (b) Qual a velocidade do bloco no momento em que se choca com a mola?



[Fig. 8-30 Enlarged.] Problem 17.

 A informação dada na primeira frase nos permite calcular a constante da mola:

$$k = \frac{F}{m} = \frac{270}{0.02} = 1.35 \times 10^4 \text{ N/m}.$$

(a) Considere agora o bloco deslizando para baixo. Se ele parte do repouso a uma altura h acima do ponto onde ele para momentaneamente, sua energia cinética é zero e sua energia potencial gravitacional inicial é mgh, onde m é a massa do bloco. Tomamos o zero da energia potencial gravitacional como sendo o ponto onde o bloco para. Tomamos também a energia potencial inicial armazenada na mola como sendo zero. Suponha que o bloco comprima a mola uma distância x antes de parar momentaneamente. Neste caso a energia cinética final é zero, a energia potencial gravitacional final é zero, e a energia potencial final da mola é $kx^2/2$. O plano inclinado não tem atrito e a força normal que ele exerce sobre o bloco não efetua trabalho (pois é perpendicular à direção do movimento), de modo que a energia mecânica é conservada. Isto significa que $mgh = kx^2/2$, donde tiramos que

$$h = \frac{kx^2}{2mg} = \frac{(1.35 \times 10^4)(0.055)^2}{2(12)(9.8)} = 0.174 \text{ m}.$$

▶ Quando o bloco é liberado, toda energia potencial Se o bloco viajasse uma distância ℓ pelo plano inclinado

$$\ell = \frac{h}{\text{sen } 30^{\circ}} = \frac{0.174}{\text{sen } 30^{\circ}} = 0.35 \text{ m}.$$

(b) Imediatamente antes de tocar a mola o bloco dista 0.055 m do ponto onde irá estar em repouso, e assim está a uma distância vertical de (0.055) sen 30° = 0.0275 m acima da sua posição final. A energia potencial é então mgh' = (12)(9.8)(0.0275) = 3.23 J.Por outro lado, sua energia potencial inicial é mgh = (12)(9.8)(0.174) = 20.5 J. A diferença entre este doisvalores fornece sua energia cinética final: $K_f = 20.5$ – 3.23 = 17.2 J. Sua velocidade final é, portanto,

$$v = \sqrt{\frac{2K_f}{m}} = \sqrt{\frac{2(17.2)}{12}} = 1.7 \text{ m/s}.$$

P 8-18 (∄ na 6^a)

Uma mola pode ser comprimida 2 cm por uma força de $\mbox{Um projétil de }0.55$ é lançado da borda de um penhasco com uma energia cinética inicial de 1550 J e, no ponto mais alto da trajetória, está a 140 m acima do ponto de cuja inclinação é 30°. (Fig. 8-30). O bloco comprime lançamento. (a) Qual a componente horizontal da velocidade do projétil? (b) Qual a componente vertical da velocidade do projétil no momento do disparo? (c) Em um certo instante, a componente vertical da velocidade do projétil é 65 m/s. Neste momento, a que altura ele se encontra acima ou abaixo do ponto de lançamento?

 \blacktriangleright (a) A energia cinética inicial do projétil é $K_i=mv_i^2/2$, e a energia potencial gravitacional é tomada como sendo zero. No topo da trajetória a velocidade do projétil apenas possui a componente horizontal da velocidade, que chamamos de v_h . Portanto

$$\frac{1}{2}mv_i^2 = \frac{1}{2}mv_h^2 + mgy_{max}$$

donde tiramos que

$$\begin{array}{rcl} v_h & = & \sqrt{v_i^2 - 2gy_{\max}} \\ & = & \sqrt{\frac{2K_i}{m} - 2gy_{\max}} \\ & = & \sqrt{\frac{(2)(1550)}{0.55} - 2(9.8)(140)} = 54 \text{ m/s} \end{array}$$

(b) A componente vertical é dada por

$$v_v = \sqrt{v_i^2 - v_h^2}$$

= $\sqrt{\frac{2K_i}{m} - v_h^2}$
= $\sqrt{\frac{(2)(1550)}{0.55} - 54} = 52 \text{ m/s}$

(c) No tal instante a energia cinética K do projétil é

$$\begin{split} K &= \frac{1}{2} m v^2 &= \frac{1}{2} m \left[v_h^2 - v_v^2 \right] \\ &= \frac{1}{2} (0.55) \left[(54)^2 + (65)^2 \right] \\ &= 1964 \text{ J}. \end{split}$$

Chamemos de d o deslocamento vertical desde o ponto inicial até o instante em questão. Então,

$$E_i = \frac{1}{2}mv_i^2 = K + U = K + mgd,$$

o que nos fornece

$$d = \frac{1}{mg} \left(\frac{1}{2} m v_i^2 - K \right)$$
$$= \frac{1}{(0.55)(9.8)} (1550 - 1964)$$
$$= -76.8 \text{ m}.$$

Portanto o ponto d em questão encontra-se ABAIXO da posição inicial de lançamento.

P 8-19 (# na 6a)

Uma bola de 50 g é arremessada de uma janela com uma velocidade inicial de 8 m/s e um ângulo de 30° para cima em relação à horizontal. Determine (a) a energia cinética da bola no ponto mais alto da trajetória e (b) a sua velocidade quando se encontra a 3 m abaixo da janela. A resposta do item (b) depende (c) da massa da bola ou (d) do ângulo de arremesso?

▶ (a) No topo da trajetória, a componente vertical da velocidade da bola é zero enquanto que sua componente horizontal continua sendo $v_h = v_0 \cos 30^o$, onde v_0 é o módulo da velocidade da bola. A energia cinética K da bola de massa m é, portanto,

$$K = \frac{1}{2}m \ v_h^2 = \frac{1}{2}(50 \times 10^{-3}) \ [(8)(\cos 30^o)]^2 = 1.2 \text{ J}.$$

(b) Quando a bola se move com uma velocidade v a uma distância h=3 m abaixo da janela, sua energia potencial é menor que o seu valor inicial, a diferença sendo igual a -mgh. Conservação da energia então fornece

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 - mgh,$$

donde obtemos

$$v = \sqrt{v_0^2 + 2gh} = \sqrt{8^2 + (2)(9.8)(3)} = 11 \text{ m/s}.$$

(c) e (d) Da expressão para v acima, fica bem claro que v não depende nem da massa da bola nem do ângulo inicial.

P 8-20 (∄ na 6^a)

A mola de uma espingarda de mola tem uma constante de 1 N/cm. Quando a espingarda faz um ângulo de 30° para cima em relação horizontal, uma bala de 50 g é disparada e atinge uma altura de 2 m acima do cano da espingarda. (a) Qual a velocidade da bala ao deixar o cano? (b) De quanto a mola estava comprimida no momento do disparo?

▶ (a) Chamando-se de v_0 o módulo da velocidade inicial da bala de massa m, temos que a componente horizontal da velocidade é $v_h = v_0 \cos 30^\circ$. No topo da trajetória, a bala tem apenas velocidade horizontal. Portanto, a conservação da energia mecânica nos diz que

$$\frac{1}{2}mv_o^2 = \frac{1}{2}mv_h^2 + mgy_{max}$$

$$= \frac{1}{2}m(v_0\cos 30^o)^2 + mgy_{max}$$

o que nos fornece

$$v_0 = \sqrt{\frac{2gy_{\text{max}}}{1 - \cos^2 30^{\circ}}}$$

$$=\frac{\sqrt{(2)(9.8)(2)}}{\text{sen } 30^{\circ}} = 4\sqrt{9.8} = 12.5 \text{ m/s}.$$

(b) A mola estava comprimida de x tal que, pela conservação da energia, tenhamos

$$\frac{1}{2}kx^2 = \frac{1}{2}mv_0^2$$
,

donde obtemos

$$x = v_0 \sqrt{\frac{m}{k}} = (12.5) \sqrt{\frac{0.050}{100}} = 0.28 \text{ m}.$$

P 8-21 (∄ na 6^a)

Uma bala de morteiro de 5 kg é disparada para cima com uma velocidade inicial de 100 m/s e um ângulo de 34° em relação à horizontal. (a) Qual a energia cinética da bala no momento do disparo? (b) Qual é a variação na energia potencial da bala até o momento em que atinge o ponto mais alto da trajetória? (c) Qual a altura atingida pela bala?

▶ (a) Seja m a massa da bala e v₀ sua velocidade inicial. A energia cinética inicial é então

$$K_i = \frac{1}{2}mv_0^2 = \frac{1}{2}(5)(100)^2 = 2.5 \times 10^4 \text{ J}.$$

(b) Tome o zero da energia potencial gravitacional como sendo o ponto de tiro e chame de U_f a energia potencial no topo da trajetória. U_f coincide então com a variação da energia potencial deste o instante do tiro até o instante em que o topo da trajetória é alcançada. Neste ponto a velocidade da bala é horizontal e tem o mesmo valor que tinha no início: $v_h = v_0 \cos \theta_0$, onde θ_0 é o ângulo de tiro. A energia cinética no topo é

$$K_f = \frac{1}{2}mv_h^2 = \frac{1}{2}mv_0^2\cos^2\theta_0.$$

Como a energia mecânica é conservada

$$\frac{1}{2}mv_0^2 = U_f + \frac{1}{2}mv_0^2 \cos^2 \theta_0.$$

Portanto

$$U_f = \frac{1}{2}mv_0^2(1 - \cos^2\theta_0)$$

 $= \frac{1}{2}mv_0^2 \operatorname{sen}^2\theta_0$
 $= \frac{1}{2}(5)(100)^2 \operatorname{sen}^2 34^o$
 $= 7.8 \times 10^3 \text{ J.}$

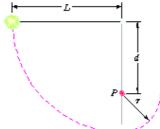
(c) A energia potencial no topo da trajetória é também dada por $U_f = mgh$, onde h é a altura (desnível) do

topo em relação ao ponto de tiro. Resolvendo para h, encontramos:

$$h = \frac{U_f}{mg} = \frac{7.8 \times 10^3}{(5)(9.8)} = 160 \text{ m}.$$

P 8-23 (8-23/6^a)

A corda da Fig. 8-31 tem L=120 cm de comprimento e a distância d até o pino fixo P é de 75 cm. Quando a bola é liberada em repouso na posição indicada na figura, descreve a trajetória indicada pela linha tracejada. Qual é a velocidade da bola (a) quando está passando pelo ponto mais baixo da trajetória e (b) quando chega ao ponto mais alto da trajetória depois que a corda toca o pino?



[Fig. 8-31 Enlarged.] Problems 23 and 32.

▶ Chame de A o ponto mais baixo que a bola atinge e de B o ponto mais alto da trajetória após a bola tocar no pino. Escolha um sistemas de coordenada com o eixo y originando-se no ponto A e apontando para cima. A energia inicial da bola de massa m no campo gravitacional da Terra antes de ser solta vale E = mgL. Conservação da energia fornece-nos então uma equação para a velocidade v da bola em qualquer lugar especificado pela coordenada y:

$$E = mgL = \frac{1}{2}mv^2 + mgy.$$

(a) Com $y_A = 0$ em $mgL = \frac{1}{2}mv_A^2 + mgy_A$, obtemos facilmente que

$$v_A = \sqrt{2gL} = \sqrt{(2)(9.8)(1.2)} = 4.8 \text{ m/s}.$$

(b) Importante aqui é perceber que o tal ponto mais alto da trajetória depois que a corda toca o pino não é o ponto L-d (como a figura parece querer indicar) mas sim o ponto $y_B=2(L-d)$, pois a bola tem energia suficiente para chegar até ele! É neste detalhezito que mora o perigo...:-) Substituindo y_B em $mgL=\frac{1}{2}mv_B^2+mgy_B$, obtemos então facilmente que

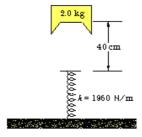
$$v_B = \sqrt{2g(2d - L)} = \sqrt{2(9.8)[2(0.75) - 1.2]}$$

= 2.4 m/s.

Qual a razão deste último valor ser a metade do anterior?...

P 8-25 (8-25/6^a)

Deixa-se cair um bloco de 2 kg de uma altura de 40 cm sobre uma mola cuja constante é k = 1960 N/m (Fig. 8-32). Determine a compressão máxima da mola.



[Fig. 8-32 Enlarged.] Problem 25

Seja m a massa do bloco, h a altura da queda e x a compressão da mola. Tome o zero da energia potencial como sendo a posição inicial do bloco. O bloco cai uma distância h+x e sua energia potencial gravitacional final $ext{\'e} - m q(h + x)$. Valores positivos de x indicam ter havido compressão da mola. A energia potencial da mola é inicialmente zero e $kx^2/2$ no final. A energia cinética é zero tanto no início quanto no fim. Como a energia é conservada, temos

$$mg(h + x) = \frac{1}{2}kx^2$$
.

 $mg(h+x) = \tfrac{1}{2}kx^2.$ Ou seja, a equação quadrática

$$\frac{1}{2}kx^2 - mgx - mgh = 0$$

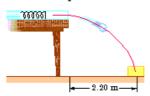
cujo PAR de soluções é

$$x = \frac{mg \pm \sqrt{(mg)^2 + 2mghk}}{k}$$
$$= \frac{19.6 \pm \sqrt{(19.6)^2 + 2(19.6)(0.6)(1960)}}{1960}$$

que fornece dois valores para x: 0.10 m ou -0.080 m. Como procuramos uma compressão, o valor desejado é $0.10 \, \mathrm{m}$

P 8-27 (8-27/6^a)

Duas crianças estão competindo para ver quem consegue acertar numa pequena caixa com uma bola de gule disparada por uma espigarda de mola colocada sobre uma mesa. A distância horizontal entre a borda da mesa e a caixa é de 2.2 m (Fig. 8-34). João comprime a mola-1.1 cm e a bola cai 27 cm antes do alvo. De quando devel Maria comprimir a mola para acertar na caixa?



[Fig. 8-34 Enlarged.] Problem 27

▶ A distância que a bola de gude viaja é determinada pela sua velocidade inicial, que é determinada pela compressão da mola.

Seja h a altura da mesa e x a distância horizontal até o ponto onde a bola de gude aterrisa. Então $x = v_0 t$ e $h = gt^2/2$, onde v_0 é a velocidade inicial da bola de gude e t é o tempo que ela permanece no ar. A segunda

$$t = \sqrt{2h/g} \quad \text{de modo que} \quad x = x_0 \sqrt{2h/g}.$$

A distância até o ponto de aterrisagem é diretamente proporcional à velocidade inicial pois $x = v_0 t$. Seja

 v_{01} a velocidade inicial do primeiro tiro e x_1 a distância horizontal até seu ponto de aterrisagem; seja v_{02} a velocidade inicial do segundo tiro e x_2 a distância horizontal até seu ponto de aterrisagem. Então

$$v_{02} = \frac{x_2}{x_1} v_{01}$$
.

Quando a mola é comprimida a energia potencial é $k\ell^2/a$, onde ℓ é a compressão. Quando a bola de gude perde contato da mola a energia potencial é zero e sua energia cinética é $mv_0^2/2$. Como a energia mecânica é conservada, temos

$$\frac{1}{2}mv_0^2 = \frac{1}{2}k\ell^2$$
,

de modo que a velocidade inicial da bola de gude é diretamente proporcional à compressão original da mola. Se ℓ_1 for a compressão do primeiro tiro e ℓ_2 a do segundo, então $v_{02} = (\ell_2/\ell_1)v_{01}$. Combinando isto com o resultado anterior encontramos $\ell_2 = (x_2/x_1)\ell_1$. Tomando agora $x_1 = 2.20 - 0.27 = 1.93$ m, $\ell_1 = 1.10$ cm, e $x_2 = 2.2$ m, encontramos a compressão ℓ_2 desejada:

$$\ell_2 = \left(\frac{2.20 \text{ m}}{1.93 \text{ m}}\right) (1.10 \text{ cm}) = 1.25 \text{ cm}.$$

P 8-31 (8-26/6^a)

Tarzan, que pesa 688 N, decide usar um cipó de 18 m de comprimento para atravessar um abismo (Fig. 8-36). Do ponto de partida até o ponto mais baixo da trajetória, desce 3.2 m. O cipó é capaz de resitir a uma força máxima de 950 N. Tarzan consegue chegar ao outro la-

c. 8-36 Ph. Problem 31

▶ Chamando de m a massa do Tarzan e de v a sua velocidade no ponto mais baixo temos que

$$\frac{1}{2}mv^2 = mgh$$
,

onde h é a altura que Tarzan desce. Desta expressão tiramos que

$$v^2 = 2gh = 2g(3.2) = 6.4g.$$

Por outro lado, no ponto mais baixo temos, da segunda lei de Newton, que a força centrípeta está relacionada com a tensão no cipó através da equação

$$T - mg = m \frac{v^2}{R}$$

onde R é o raio da trajetória. Portanto, temos que

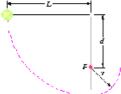
$$T = mg + m\frac{v^2}{R} = mg + \frac{6.4mg}{R}$$

$$= 688 \left(1 + \frac{6.4}{18}\right)$$
$$= 932.6 \text{ N}.$$

Como T < 950 N, vemos que Tarzan consegue atravessar, porém estirando o cipó *muito* perto do limite máximo que ele agüenta!

P 8-32 (8-29/6^a)

Na Fig. 8-31 mostre que se a bola fizer uma volta completa em torno do pino, então d>3L/5. (Sugestão: A bola ainda deve estar se movendo quando chegar ao ponto mais alto da trajetória. Você saberia explicar por quê?)



[Fig. 8-31 Enlarged] Problems 23 and 32

▶ Antes de mais nada, este problema é uma continuação do problema 8-23. Releia-o antes de continuar.

Use conservação da energia. A energia mecânica deve ser a mesma no topo da oscilação quanto o era no início do movimento. A segunda lei de Newton fornece a velocidade (energia cinética) no topo. No topo a tensão T na corda e a força da gravidade apontam ambas para baixo, em direção ao centro do círculo. Note que o raio do círculo é r=L-d, de modo que temos

$$T + mg = m \frac{v^2}{L - d},$$

onde v é a velocidade e m é a massa da bola. Quando a bola passa pelo ponto mais alto (com a menor velocidade possível) a tensão é zero. Portanto, $mg=mv^2/(L-d)$ e temos que $v=\sqrt{g(L-d)}$.

Tome o zero da energia potencial gravitacional como sendo no ponto mais baixo da oscilação. Então a energia potencial inicial é mgL. A energia cinética inicial é 0 pois a bola parte do repouso. A energia potencial final, no topo da oscilação, é mg2(L-d) e a energia cinética final é $mv^2/2 = mg(L-d)/2$. O princípio da conservação da energia fornece-nos

$$mgL = mg2(L - d) + \frac{1}{2}mg(L - d).$$

Desta expressão obtemos sem problemas que

$$d = \frac{3}{5} L$$
.

Se d for maior do que 3L/5, de modo que o ponto mais alto da trajetória fica mais abaixo, então a velocidade da bola é maior ao alcançar tal ponto e pode ultrapassa-lo. Se d for menor a bola não pode dar a volta. Portanto o valor 3L/5 é um limite mais baixo.

P 8-35* (8-33*/6a)

Uma corrente é mantida sobre uma mesa sem atrito com um quarto de seu comprimento pendurado para fora da mesa, como na Fig. 8-37. Se a corrente tem um comprimento L e uma massa m, qual o trabalho necessário para puxá-la totalmente para cima da mesa?

[Fig. 8-37 Enlarged] Problem 35.

▶ O trabalho necessário é igual à variação da energia potencial gravitacional a medida que a corrente é puxada para cima da mesa. Considere a energia potencial como sendo zero quando toda a corrente estiver sobre a mesa. Divida a parte pendurada da corrente num número grande de segmentos infinitesimais, cada um com comprimento dy. A massa de um tal segmento é (M/L)dy e a energia potencial do segmento a uma distância y abaixo do topo da mesa é $dU = -(m/L)gy\ dy$. A energia potencial total é

$$\begin{split} U &= -\frac{m}{L} \; g \int_0^{L/4} y \, dy &= -\frac{1}{2} \frac{m}{L} g \Big(\frac{L}{4} \Big)^2 \\ &= -\frac{1}{32} \; mgL. \end{split}$$

O trabalho necessário para puxar a corrente para cima da mesa é, portanto, -U = mgL/32.

P 8-37* (8-35*/6a)

Um menino está sentado no alto de um monte hemisférico de gelo (iglu!) (Fig. 8-39). Ele recebe um pequeníssimo empurrão e começa a escorregar para baixo. Mostre que, se o atrito com o gelo puder ser desprezado, ele perde o contato com o gelo num ponto cuja altura é 2R/3. (Sugestão: A força normal desaparece no momento em que o menino perde o contato como o gelo.)

[Fig. 8-39 Enlarged.] Problem 37.

▶ Chame de N a força normal exercida pelo gelo no menino e desenhe o diagrama de forças que atuam no menino. Chamando de θ o ângulo entre a vertical e o raio que passa pela posição do menino temos que a força que aponta radialmente para dentro é $mg\cos\theta-N$ que, de acordo com a segunda lei de Newton, deve ser igual a força centrípeta mv^2/R , onde v é a velocidade do menino. No ponto em que o menino se desprende do gelo temos N=0, de modo que

$$g\cos\theta = \frac{v^2}{R}$$
.

Precisamos agora determinar a velocidade v. Tomando a energia potencial como zero quando o menino está no topo do iglu, teremos para $U(\theta)$ a expressão

$$U(\theta) = -mgR(1 - \cos \theta).$$

O menino inicia seu movimeno do repouso e sua energia Portanto a separação de equilíbrio é dada por cinética na hora que se desprende vale $mv^2/2$. Portanto, a conservação da energia nos fornece $0 = mv^2/2$ – $mgR(1-\cos\theta)$, ou seja,

$$v^2 = 2gR(1 - \cos\theta).$$

Substituindo este resultado na expressão acima, obtida da força centrípeta, temos

$$g\cos\theta = 2g(1-\cos\theta),$$

ou, em outras palavras, que

$$\cos \theta = \frac{2}{3}$$
.

A altura do menino acima do plano horizontal quando se desprende é

$$R\cos\theta = \frac{2}{3}R.$$

8.1.2 Usando a Curva de Energia Potencial

P 8-39 (8-37/6^a)

A energia potencial de uma molécula diatômica (H2 ou O2, por exemplo) é dada por

$$U = \frac{A}{r^{12}} - \frac{B}{r^6}$$

onde r é a distância entre os átomos que formam a molécula e A e B são constantes positivas. Esta energia potencial se deve à força que mantém os átomos unidos. (a) Calcule a distância de equilibrio, isto é, a distância entre os átomos para a qual a força a que estão submetidos é zero. Verifique se a força é repulsiva (os átomos tendem a se separar) ou atrativa (os átomos tendem a se aproximar) se a distância entre eles é (b) menor e (c) maior do que a distância de equilíbrio.

▶ (a) A força é radial (ao longo a line que une os átomos) e é dada pela derivada de U em relação a r:

$$F = -\frac{dU}{dr} = \frac{12A}{r^{13}} - \frac{6B}{r^7}$$
.

A separação r_0 de equilibrio é a separação para a qual temos $F(r_0) = 0$, ou seja, para a qual

$$12A - 6Br_0^6 = 0.$$

$$r_0 = \left(\frac{2A}{B}\right)^{1/6} = 1.12 \left(\frac{A}{B}\right)^{1/6}$$
.

(b) A derivada da força em relação a r, computada na separação de equilíbrio vale

$$\begin{split} \frac{dF}{dr} &= -\frac{12 \cdot 13A}{r_0^{14}} + \frac{42B}{r_0^8} \\ &= -\frac{(156A - 42Br_o^6)}{r_0^{14}} \\ &= -\frac{72A}{r_0^{14}}, \end{split}$$

onde usamos o fato que, do item anterior, sabemos que $r_0^6 = 2A/B$. A derivada é negativa, de modo que a força é positiva se r for um pouco menor que r_0 , indicando uma força de repulsão.

(c) Se r for um pouco maior que r₀ a força é negativa, indicando que a força é de atração.

Conservação da Energia 8.1.3

Trabalho Executado por Forças de Atrito

E 8-45 (8-48/6°)

Aproximadamente 5.5×10^6 kg de água caem por segundo nas cataratas de Niágara a partir de uma altura de 50 m. (a) Qual a energia potencial perdida por segundo pela água que cai? (b) Qual seria a potência gerada por uma usina hidrelétrica se toda a energia potencial da água fosse convertida em energia elétrica? (c) Se a companhia de energia elétrica vendesse essa energia pelo preço industrial de 1 centavo de dólar por quilowatthora, qual seria a sua receita anual?

 (a) O decréscimo na energia potencial gravitacional por segundo é

$$(5.5 \times 10^6)(9.8)(50) = 2.7 \times 10^9 \text{ J}.$$

(b) A potência seria

$$P = (2.7 \times 10^9 \text{ J})(1 \text{ s}) = 2.7 \times 10^9 \text{ W}.$$

(c) Como a energia total gerada em um ano é

$$E = Pt = (2.7 \times 10^6 \text{ kW})(1 \text{ ano})(8760 \text{ h/ano})$$

= $2.4 \times 10^{10} \text{ kW} \cdot \text{h}$,

o custo anual seria

$$(2.4 \times 10^{10})(0.01) = 2.4 \times 10^8$$
 dólares,

E 8-50 (∄ na 6^a)

Um menino de 51 kg sobe, com velocidade constante, por uma corda de 6 m em 10 s. (a) Qual o aumento da energia potencial gravitacional do menino? (b) Qual a potência desenvolvida pelo menino durante a subida?

$$\Delta U = mgh = (51)(9.8)(6) = 3.0 \times 10^3 \text{ J}.$$

$$P = \frac{\Delta U}{t} = \frac{3000}{10} = 300 \text{ W}.$$

E 8-51 (∄ na 6^a)

Uma mulher de 55 kg sobe correndo um lance de escada de 4.5 m de altura em 3.5 s. Qual a potência desenvolvida pela mulher?

▶

$$P = \frac{(55)(9.8)(4.5)}{3.5} = 693 \text{ W}.$$

E 8-55 (∄ na 6^a)

Um nadador se desloca na água com uma velocidade média de 0.22 m/s. A força média de arrasto que se opõe a esse movimento é de 110 N. Qual a potência média desenvolvida pelo nadador?

▶ Para nada com velocidade constante o nadador tem que nadar contra a água com uma força de 110 N. Em relação a ele, a água passa a 0.22 m/s no sentido dos seus pés, no mesmo sentido que sua força. Sua potência é

$$P = \mathbf{F} \cdot \mathbf{v} = FV = (110)(0.22) = 24 \text{ W}.$$

E 8-64 (8-43/6^a)

Um urso de 25 kg escorrega para baixo num troco de árvore a partir do repouso. O tronco tem 12 m de altura e a velocidade do urso ao chegar ao chão é de 5.6 m/s. (a) Qual a variação da energia potencial do urso? (b) Qual a energia cinética do urso no momento em que chega ao chão? (c) Qual a força média de atrito que agiu sobre o urso durante a descida?

▶ (a) Considere a energia potencial gravitacional inicial como sendo $U_i = 0$. Então a energia potencial gravitacional final é $U_f = -mgL$, onde L é o comprimento da árvore. A variação é, portanto,

$$U_f - U_i = -mgL = -(25)(9.8)(12)$$

= $-2.94 \times 10^3 \text{ J}.$

(b) A energia cinética é

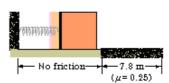
$$K = \frac{1}{2}mv^2 = \frac{1}{2}(25)(5.6)^2 = 392 \text{ J}.$$

(c) De acordo com a Eq. 8-26, a variação da energia mecânica é igual a -fL, onde f é a força de atrito média. Portanto

$$f = -\frac{\Delta K + \Delta U}{L} = -\frac{392 - 2940}{12} = 210 \text{ N}.$$

P 8-66 (8-51/6^a)

Um bloco de 3.5 kg é empurrado a partir do repouso por uma mola comprimida cuja constante de mola é 640 N/m (Fig. 8-45). Depois que a mola se encontra totalmente relaxada, o bloco viaja por uma superficie horizontal com um coeficiente de atrito dinâmico de 0.25, percorrendo uma distância de 7.8 m antes de parar. (a) Qual a energia mecânica dissipada pela força de atrito? (b) Qual a energia cinética máxima possuída pelo bloco? (c) De quanto foi comprimida a mola antes que o bloco fosse liberado?



[Fig. 8-45 Enlarged.] Problem 66.

▶ (a) A magnitude da força de fricção é $f = \mu_k N$, onde μ_k é o coeficiente de atrito dinâmico e N é a força normal da superficie sobre o bloco. As únicas forças verticais atuantes no bloco são a força normal, para cima, e a força da gravidade, para baixo. Como a componente vertical da aceleração do bloco é zero, a segunda lei de Newton nos diz que N = mg, onde m é a massa do bloco. Portanto $f = \mu_k mg$. A energia mecânica dissipada é dada por $\Delta E = f\ell = \mu_k mg\ell$, onde ℓ é a distância que o bloco anda antes de parar. Seu valor é

$$\Delta E = (0.25)(3.5)(9.8)(7.8) = 66.88 \text{ J}.$$

- (b) O bloco tem sua energia cinética máxima quando perde contato com a mola e entra na parte da superfície onde a fricção atua. A energia cinética máxima é igual à energia mecânica dissipada pela fricção: 66.88 J.
- (c) A energia que aparece como energia cinética estava ariginalmente armazenada como energia potencial

elástica, da mola comprimida. Portanto $\Delta E = kx^2/2$, onde k é a constante da mola e x é a compressão. Logo,

$$x = \sqrt{\frac{2\Delta E}{k}} = \sqrt{\frac{2(66.88)}{640}} = 0.457 \; \mathrm{m} \simeq 46 \; \mathrm{cm}.$$

P 8-69 (8-55/6a)

Dois montes nevados têm altitudes de 850 m e 750 m em relação ao vale que os separa (Fig. 8-47). Uma pista de esqui vai do alto do monte maior até o alto do monte menor, passando pelo vale. O comprimento total da pista é 3.2 km e a inclinação média é 30°. (a) Um esquiador parte do repouso no alto do monte maior. Com que velovidade chegará ao alto do monte menor sem se impulsionar com os bastões? Ignore o atrito. (b) Qual deve ser aproximadamente o coeficiente de atrito dinâmico entre a neve e os esquis para que o esquiador pare exatamente no alto do pico menor?

[Fig. 8-47 Enlarged.] Problem 69

▶ (a) Tome o zero da energia potencial gravitacional como estando no vale entre os dois picos. Então a energia potencial é $U_i = mgh_i$, onde m é a massa do esquiador e h_i é a altura do pico mais alto. A energia potencial final é $U_f = mgh_f$, onde h_f é a altura do pico menor. Inicialmente o esquiador tem energia cinética $K_i = 0$. Escrevamos a energia cinética final como $K_f = mv^2/2$, onde v é a velocidade do esquiador no topo do pico menor. A força normal da superfície dos montes sobre o esquiador não faz trabalho (pois é perpendicular ao movimento) e o atrito é desprezível, de modo que a energia mecânica é conservada: $U_i + K_i = U_f + K_f$, ou seja, $mgh_i = mgh_f + mv^2/2$, donde tiramos

$$v = \sqrt{2g(h_i - h_f)} = \sqrt{2(9.8)(850 - 750)} = 44 \frac{\text{m}}{\text{s}}.$$

(b) Como sabemos do estudo de objetos que deslizam em planos inclinados, a força normal da superficie inclinada dos montes no esquiador é dada por $N=mg\cos\theta$, onde θ é o ângulo da superficie inclinada em relação à horizontal, 30° para cada uma das superficies em questão. A magnitude da força de atrito é dada por $f=\mu_k N=\mu_k mg\cos\theta$. A energia mecânica dissipada pela força de atrito é $f\ell=\mu_k mg\ell\cos\theta$, onde ℓ é o comprimento total do trajeto. Como o esquiador atinge o topo do monte mais baixo sem energia cinética, a energia mecânica dissipada pelo atrito é igual à diferença de energia potencial entre os pontos inicial e final da trajetória. Ou seja,

$$\mu_k mg\ell \cos \theta = mg(h_i - h_f),$$

donde tiramos ui:

$$\mu_k = \frac{h_i - h_f}{\ell \cos \theta}$$

$$= \frac{850 - 750}{(3.2 \times 10^3) \cos 30^o} = 0.036.$$

P 8-74 (∄ na 6^a)

Uma determinada mola $n\~ao$ obedece à lei de Hooke. A força (em newtons) que ela exerce quando distendida de uma distância x (em metros) é de $52.8x + 38.4x^2$, no sentido oposto ao da distensão. (a) Calcule o trabalho necessário para distender a mola de x=0.5 m até x=1.0 m. (b) Com uma das extremidades da mola mantida fixa, uma partícula de 2.17 kg é presa à outra extremidade e a mola é distendida de uma distância x=1.0. Em seguida, a partícula é liberada sem velocidade inicial. Calcule sua velocidade no instante em que a distensão da mola diminuiu para x=0.5 m. (c) A força exercida pela mola é conservativa ou nãoconservativa? Explique sua resposta.

▶ (a) Para distender a mola aplica-se uma força, igual em magnitude à força da mola porém no sentido oposto. Como a uma distensão no sentido positivo de x exerce uma força no sentido negativo de x, a força aplicada tem que ser $F=52.8x+38.4x^2$, no sentido positivo de x. O trabalho que ela realiza é

$$W = \int_{0.5}^{1.0} (52.8x + 38.4x^2) dx$$
$$= \left[\frac{52.8}{2} x^2 + \frac{38.4}{3} x^3 \right]_{0.5}^{1.0} = 31.0 \text{ J}.$$

(b) A mola faz 31 J de trabalho e este deve ser o aumento da energia cinética da partícula. Sua velocidade é então.

$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2(31.0)}{2.17}} = 5.35 \text{ m/s}.$$

(c) A força é conservativa pois o trabalho que ela faz quando a partícula vai de um ponto x₁ para outro ponto x₂ depende apenas de x₁ e x₂, não dos detalhes do movimento entre x₁ e x₂.

P 8-79 (8-61/6a)

Uma pedra de peso w é jogada verticalmente para cima com velocidade inicial v_0 . Se uma força constante f devido à resistência do ar age sobre a pedra durante todo o percurso, (a) mostre que a altura máxima atingida pela pedra é dada por

$$h = \frac{v_0^2}{2g(1 + f/w)}$$
.

(b) Mostre que a velocidade da pedra ao chegar ao solo é dada por

$$v = v_0 \left(\frac{w - f}{w + f}\right)^{1/2}.$$

▶ (a) Seja h a altura máxima alcançada. A energia mecânica dissipada no ar quando a pedra sobe até a altura h é, de acordo com a Eq. 8-26, $\Delta E = -fh$. Sabemos que

$$\Delta E = (K_f + U_f) - (K_i + U_i),$$

onde K_i e K_f são as energias cinéticas inicial e final, e U_i e U_f são as energias poetenciais inicial e final. Escolha a energia como sendo zero no ponto de lançamento da pedra. A energia cinética inicial é $K_i = mv_0^2/2$, a energia potencial inicial é $U_i = 0$, a energia cinética final é $K_f = 0$ e a energia potencial final é $U_f = wh$. Portanto $-fh = wh - mv_0^2/2$, donde tiramos

$$h = \frac{mv_0^2}{2(w+f)} = \frac{wv_0^2}{2g(w+f)} = \frac{v_0^2}{2g(1+f/w)},$$

onde substituimos m por w/g e dividimos numerador e denominador por w.

(b) Note que a força do ar é para baixo quando a pedra sobe e para cima quando ela desce. Ela é sempre oposta ao sentido da velocidade. A energia dissipada durante o trajeto no ar todo é $\Delta E = -2fh$. A energia cinética final é $K_f = mv^2/2$, onde v é a velocidade da pedra no instante que antecede sua colisão com o solo. A energia potencial final é $U_f = 0$. Portanto $-2fh = mv^2/2 - mv_0^2/2$. Substituindo nesta expressão a expressão encontrada acima para h temos

$$-\frac{2fv_0^2}{2g(1+f/w)} = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2.$$

Deste resultado obtemos

$$\begin{split} v^2 &= v_0^2 - \frac{2fv_0^2}{mg(1+f/w)} &= v_0^2 - \frac{2fv_0^2}{w(1+f/w)} \\ &= v_0^2 \Big(1 - \frac{2f}{w+f}\Big) \end{split}$$

$$= v_0^2 \left(\frac{w-f}{w+f}\right),$$

de onde obtemos o resultado final procurado:

$$v = v_0 \left(\frac{w - f}{w + f}\right)^{1/2}.$$

Perceba que para f = 0 ambos resultados reduzem-se ao que já conheciamos, como não podeia deixar de ser.

8.1.5 Massa e Energia

E 8-92 (∄ na 6^a)

- (a) Qual a energia em Joules equivalente a uma massa de 102 g? (b) Durante quantos anos esta energia atenderia às necessidades de uma família que consome em média 1 kW?
- ▶ (a) Usamos a fórmula $E = mc^2$:

$$E = (0.102)(2.998 \times 10^8)^2 = 9.17 \times 10^{15} \text{ J}.$$

(b) Usamos agora E = Pt, onde P é a taxa de consumo de energia e t é o tempo. Portanto,

$$t = \frac{E}{P} = \frac{9.17 \times 10^{15}}{1 \times 10^{3}}$$

= 9.17×10^{12} segundos
= 2.91×10^{5} anos!

P 8-96 (∄ na 6^a)

Os Estados Unidos produziram cerca de 2.31×10^{12} kW·h de energia elétrica em 1983. Qual a massa equivalente a esta energia?

▶ Para determinar tal massa, usamos a relação $E = mc^2$, onde $c = 2.998 \times 10^8$ m/s é a velocidade da luz. Primeiro precisamos converter kW·h para Joules:

$$\begin{array}{lcl} 2.31\times 10^{12}~\text{kW}\cdot\text{h} &=& 2.31\times 10^{12}(10^3~\text{W})(3600~\text{s})\\ &=& 8.32\times 10^{18}~\text{J}. \end{array}$$

Portanto

$$m = \frac{E}{c^2} = \frac{8.32 \times 10^{18}}{(2.998 \times 10^8)^2} = 92.5 \text{ kg}.$$