

Prof^a Dr^a Emília de M. Rosa Marques Departamento de Matemática

CONJUNTO DE PONTOS NO PLANO COMPLEXO

• Bola Aberta: $B_r(z_0) = \{z \mid |z - z_0| < r\}$

• Bola Fechada: $B_r(z_0) = \{z \mid |z-z_0| \le r\}$

• Círculo: $B_r(z_0) = \{z \mid |z-z_0| = r\}$

<u>Definição 1</u>: Um ponto $w \in A$ é chamado **ponto interior** do conjunto A se esse conjunto A contém um disco aberto de centro em w (o disco aberto deve estar todo contido no conjunto A).

<u>Definição 2</u>: Um conjunto qualquer A é dito **aberto** se todos os seus pontos são **pontos** interiores.

<u>Definição 3</u>: Um conjunto qualquer A é dito **fechado** se seu conjunto complementar, no plano, é um conjunto aberto, ou seja, A é fechado ⇔A^C é aberto.

<u>Definição 4</u>: Chama-se **fronteira** de um conjunto qualquer A ao conjunto de pontos z tais que qualquer disco aberto centrado em z contém pontos de A e de seu complementar.

Obs: A fronteira de um conjunto A é também fronteira do seu complementar A^c.

<u>Definição 5</u>: Um ponto $w \in A$ é dito **ponto de acumulação** de um conjunto A se qualquer disco aberto centrado em w contém infinitos pontos de A.

<u>Definição 6</u>: Um ponto $w \in A$ é dito **ponto isolado** de um conjunto A se esse ponto não é ponto de acumulação de A.

<u>Definição 7</u>: Um conjunto aberto A é dito **conexo** se e somente se quaisquer dois pontos de A podem ser ligados por um caminho todo contido no conjunto A.

<u>Definição 8</u>: Um conjunto aberto e conexo é chamado de **região do plano**.

<u>Definição 9</u>: Um conjunto A do plano complexo é **limitado** se existe um real positivo K tal que $|z| \le K$, $\forall z \in C$.

<u>Definição 10</u>: Um conjunto fechado e limitado é chamado de **conjunto compacto**.

Prof^a Dr^a Emília de M. Rosa Marques Departamento de Matemática

Exercícios

- 1. Verificar a veracidade de cada frase, justificando sua resposta:
 - a. Os pontos interiores de um determinado conjunto A não podem ser pontos da fronteira de A.
 - b. Alguns pontos específicos da fronteira de A podem ser também pontos interiores do conjunto a
 - c. Um conjunto é aberto se e somente se ele não contém pontos de sua fronteira.
 - d. Todo ponto de acumulação que não pertence ao conjunto é ponto de sua fronteira.
 - e. Um conjunto é fechado se e somente se ele contém todos os seus pontos de acumulação.
- 2. Descreva e faça os gráficos de cada conjunto de pontos:

a)
$$\{z \mid |z-3i| < 5\}$$

b)
$$\{z \mid |z+3| > 7\}$$

c)
$$\left\{z \mid \left| z - \frac{1}{2} + i \right| \le 2 \right\}$$

d)
$$\{z \mid |2z+4-3i| \ge 5\}$$

3. Represente graficamente cada um dos conjuntos abaixo:

a)
$$Re(z) < -3$$

b)
$$|z+1| \le 2$$

c)
$$\operatorname{Im}(z) \ge 1$$

d)
$$z \neq 0$$
, $0 \leq \arg(z) \leq \frac{\pi}{3}$

e)
$$|z-2i| > 2$$

f)
$$1 < |z + 1 - 2i| \le 2$$

g)
$$|z| > 2$$
, $|\arg(z)| < \pi$

h)
$$\operatorname{Re}(z^2) > 0$$

- 4. Descreva e faça o gráfico do conjunto do plano dado pela seguinte equação: $z = \alpha + (\beta - \alpha)t, t \in R$.
- 5. Mostre que os conjuntos abaixo são retas:

a)
$$|z-2| = |z-3i|$$

b)
$$|z+3-i| = |z-4i|$$

a)
$$|z-2| = |z-3i|$$
 b) $|z+3-i| = |z-4i|$ c) $|z-1+i| = |1-i\sqrt{3}+z|$

6. Identifique cada um dos conjuntos de pontos dados abaixo e faça seu respectivo gráfico:

a)
$$|z-i|+|z+2|=3$$

b)
$$|z-2+i|+|z| \le 4$$