7ª LISTA DE EXERCÍCIOS DE CÁLCULO DIFERENCIAL E INTEGRAL III

Derivada Direcional. Gradiente. Fórmula de Taylor

Exercícios 6.6 – Livro: Cálculo B – Funções de várias variáveis, integrais múltiplas, integrais curvilíneas e de superfície (2ª Edição), Autoras: Mirian Buss Gonçalves e Diva Marília Flemming

- 1. Calcular, usando a definição, a derivada direcional do campo escalar f(x, y) no ponto indicado e na direção $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j}$.
 - a) $f(x, y) = 2x^2 + 2y^2 \text{ em } P(1, 1).$
 - b) f(x, y) = 2x + y em P(-1, 2).
 - c) $f(x, y) = e^{x+y} \text{ em } P(0, 1).$

Nos exercícios 2 a 6, calcular, usando a definição, a derivada direcional no ponto e direção indicados:

- **2.** $f(x, y) = x^2 y^2$, P(1, 2), na direção de $\vec{v} = 2\vec{i} + 2\vec{j}$.
- 3. f(x, y, z) = xy + z, P(2, 1, 0), na direção do eixo positivo dos z.
- **4.** f(x, y) = 2x + 3y, P(-1, 2), na direção da reta y = 2x.
- 5. $f(x, y) = 2 x^2 y^2$, P(1, 1), na direção do vetor tangente unitário à curva $C: \overrightarrow{r}(t) = (t, t^2)$ em P(1, 1).
- **6.** f(x, y, z) = 2x + 3y z, P(1, 1, -1), na direção do eixo positivo dos y.

Nos exercícios 7 a 17, calcular o gradiente do campo escalar dado

- 7. f(x, y, z) = xy + xz + yz.
- 8. $f(x, y, z) = x^2 + 2y^2 + 4z^2$.
- 9. $f(x, y) = 3xy^3 2y$.
- **10.** $f(x, y, z) = \sqrt{xyz}$.
- 11. $f(x, y, z) = z \sqrt{x^2 + y^2}$.
- **12.** $f(x, y) = e^{2x^2 + y}$.
- **13.** f(x, y) = arc tg xy.
- **14.** $f(x, y) = \frac{2x}{x y}$
- **15.** $f(x, y, z) = 2xy + yz^2 + \ln z$.
- **16.** $f(x, y, z) = \sqrt{\frac{x+y}{z}}$.
- 17. $f(x, y, z) = ze^{x^2-y}$.

- **25.** Seja $f(x, y) = 2x^2 + 5y^2$. Representar geometricamente $\nabla f(x_0, y_0)$, sendo (x_0, y_0) dado por
 - a) (1, 1)
- b (-1, 1)
- c) $\left(\frac{1}{2}, \sqrt{3}\right)$.
- **26.** Dados $A\left(1, \frac{3}{2}\right)$ e $B\left(\frac{1}{2}, 2\right)$ e a função $f(x, y) = \ln xy$, determinar o ângulo formado pelos vetores $\nabla f(A)$ e $\nabla f(B)$.
- **28.** Determinar e representar graficamente um vetor normal à curva dada no ponto indicado:
 - a) $2x^2 + 3y^2 = 8$; $P(1, \sqrt{2})$
 - b) $y = 2x^2$; P(-1, 2)
 - c) $x^2 + y^2 = 8$; P(2, 2)
 - d) y = 5x 2; $P(\frac{1}{2}, \frac{1}{2})$
- **29.** Determinar um vetor normal à superfície dada no ponto indicado e representá-lo geometricamente:
 - a) 2x + 5y + 3z = 10; $P\left(1, 2, \frac{-2}{3}\right)$
 - b) $z = 2x^2 + 4y^2$; P(0, 0, 0)
 - c) $2z = x^2 + y^2$; P(1, 1, 1).
- **30.** Traçar as curvas de nível de $f(x, y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$ que passem pelos pontos (1, 1), (1, -2) e (-2, -1).

Traçar os vetores $\nabla f(1,1)$, $\nabla f(1,-2)$ e $\nabla f(-2,-1)$.

Nos exercícios 31 a 35, determinar uma equação para a reta normal à curva dada, nos pontos indicados:

- **31.** $y = x^2$; $P_0(1, 1)$, $P_1(2, 4)$.
- **32.** $x^2 y^2 = 1$: $P_0(\sqrt{2}, 1)$.
- **33.** $x y^2 = -4$; $P_0(-3, 1)$.
- **34.** x + y = 4; $P_0(3, 1)$.
- **35.** $x^2 + y^2 = 4$; $P_0(2,0)$.
- **41.** Calcular $\frac{\partial f}{\partial s}(x_0, y_0)$ na direção $\vec{v} = 2\vec{i} \vec{j}$:
 - a) $f(x, y) = 3x^2 2y^2$; $(x_0, y_0) = (1, 2)$
 - b) $f(x, y) = e^{xy}$; $(x_0, y_0) = (-1, 2)$
 - c) $f(x, y) = \frac{x + y}{1 x}; (x_0, y_0) = (0, \frac{1}{2}).$

- **42.** Calcular as derivadas direcionais das seguintes funções nos pontos e direções indicados:
 - a) $f(x, y) = e^{-x} \cos y$ em (0, 0) na direção que forma um ângulo de 45° com o eixo positivo dos x, no sentido anti-horário.
 - b) $f(x, y, z) = 4x^2 3y^2 + z$ em (-1, 2, 3) na direção da normal exterior à superfície $x^2 + y^2 + z^2 = 4$, no ponto $P(1, 1, \sqrt{2})$.

Nos exercícios 43 a 47, determinar a derivada direcional da função dada:

- **43.** $f(x, y, z) = 3x^2 + 4y^2 + z$, na direção do vetor $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$.
- **44.** f(x, y, z) = xy + xz + yz, na direção de máximo crescimento de f.
- **45.** $f(x, y) = x^2 + y^2$, na direção da semi-reta $y x = 4, x \ge 0$.
- **46.** $f(x, y) = 4 x^2 y^2$, na direção de máximo decrescimento de f.
- **47.** $f(x, y, z) = \sqrt{1 x^2 y^2 z^2}$, na direção do vetor $\vec{a} = \vec{i} + \vec{j} + \vec{k}$.
- **48.** A derivada direcional da função w = f(x, y) em $P_0(1, 1)$ na direção do vetor $\overrightarrow{P_0P_1}$, $P_1(1, 2)$, é 2, e na direção do vetor $\overrightarrow{P_0P_2}$, $P_2(2, 0)$, é 4. Quanto vale $\frac{\partial w}{\partial s}$ em P_0 na direção do vetor $\overrightarrow{P_0O}$, onde 0 é a origem?
- **49.** Em que direção devemos nos deslocar partindo de Q(1, 1, 0) para obter a taxa de maior decréscimo da função $f(x, y) = (2x + y 2)^2 + (5x 2y)^2$?
- **50.** Em que direção a derivada direcional de $f(x, y) = 2xy x^2$ no ponto (1, 1) é nula?
- **51.** Em que direção e sentido a função dada cresce mais rapidamente no ponto dado? Em que direção e sentido decresce mais rapidamente?
 - a) $f(x, y) = 2x^2 + xy + 2y^2 \text{ em } (1, 1)$
 - b) $f(x, y) = e^{xy} \text{ em } (2, -1).$
- **52.** Determinar os dois vetores unitários para os quais a derivada direcional de f no ponto dado é zero.
 - a) $f(x, y) = x^3y^3 xy$, P(10, 10)
 - b) $f(x, y) = \frac{x}{x + y}$, P(3, 2)
 - c) $f(x, y) = e^{2x+y}, P(1, 0).$
- **53.** Uma função diferenciável f(x, y) tem, no ponto $\left(0, \frac{\pi}{2}\right)$, derivada direcional igual a $\frac{2}{5}$ na direção $3\vec{i} + 4\vec{j}$ e igual a $\frac{11}{5}$ na direção $4\vec{i} 3\vec{j}$. Calcular:
 - a) $\nabla f\left(0, \frac{\pi}{2}\right)$
 - b) $\frac{\partial f}{\partial s} \left(0, \frac{\pi}{2} \right)$ na direção $\vec{a} = \vec{i} + \vec{j}$.

54. Determinar a derivada direcional da função $z=\frac{(y-1)^2}{x}$ no ponto $P_0(1,\sqrt{2})$, na direção da normal exterior à elipse $2x^2+3y^2=8$ no ponto P_0 .

Nos exercícios 55 a 58, encontrar o valor máximo da derivada direcional do campo escalar dado, nos pontos indicados:

55.
$$f(x, y) = xy^2 - (y - x)^2$$
; $P_0(1, 1)$

56.
$$f(x, y, z) = x^2 + 2xy + z^2$$
; $P_0(0, 0, 0) \in P_1(1, 2, 2)$

57.
$$f(x, y, z) = \cos x + \sin y$$
; $P_0(x, y, z)$

58.
$$f(x, y) = \operatorname{arc} \operatorname{tg} \frac{y}{x}, P_0(-1, 1).$$

59. Dada a função $w = x^2 + y^2 + z^2$, determinar sua derivada direcional no ponto $P(1, 1, \sqrt{2})$, na direção da normal exterior à superfície $z^2 = x^2 + y^2$ em P.

Fórmula de Taylor

- **1-** Encontre o polinômio de Taylor de ordem 2 associado a função f no ponto (0,0) em que $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = xsen(x) + ysen(y)
- **2-** Encontre o polinômio de Taylor de ordem 2 associado a função g no ponto (1,1) em que $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $g(x, y) = e^{2x+3y}$
- **3-** Encontre o polinômio de Taylor de ordem 2 da função $f(x, y) = sen(x^4 + y^4)$ em torno da origem.
- **4-** Encontre o polinômio de Taylor de ordem 3 associado a função f no ponto (0,0) em que $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x, y) = xsen(x) + ysen(y)
- **5-** Encontre o polinômio de Taylor de ordem 3 associado a função g no ponto (1,1) em que $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $g(x, y) = e^{2x+3y}$.