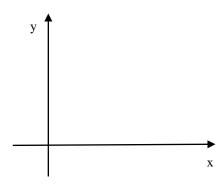


CÁLCULO DE ZEROS DE FUNÇÕES REAIS

Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f(x) = 0. A função f(x) pode ser um polinômio em x ou uma função transcendente. Em raros casos é possível obter as raízes exatas de f(x)=0, como ocorre, por exemplo, supondo-se f(x) um polinômio fatorável.

Resolver a equação f(x) = 0 consiste em determinar a solução (ou soluções) real ou complexa, \bar{x} , tal que $f(\bar{x}) = 0$. Por exemplo, na equação $f(x) = \cos x + x^2 + 5 = 0$, devemos determinar a solução \bar{x} tal que $f(\bar{x}) = \cos \bar{x} + \bar{x}^2 + 5 = 0$.

Dado $f: \mathbb{R} \to \mathbb{R}$ com f definida e contínua em [a, b], são denominadas raízes de f os valores de x tais que f(x) = 0.



Graficamente, as raízes reais são representadas pelas abscissas dos pontos onde a curva intercepta o eixo \overrightarrow{Ox} .

Como obter as raízes de uma equação qualquer?

Métodos numéricos iterativos são utilizados para determinar aproximadamente a solução real \bar{x} . Nestes métodos, para determinar uma solução \bar{x} quando esta é um valor real, necessitamos de uma solução inicial. A partir desta solução, geramos uma sequência de soluções aproximadas que, sob determinadas condições teóricas, convergem para a solução \bar{x} desejada.

Portanto, para o problema de calcular uma raiz pode ser dividido em dois passos:

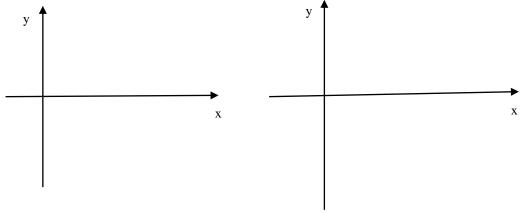
- **Passo 1**: Localização ou isolamento das raízes, que consiste em obter um intervalo [a,b] que contém a raiz.
- Passo 2: Refinamento da raiz, que consiste em escolhida as aproximações iniciais no intervalo encontrado no Passo 1, melhorá-las sucessivamente até se obter uma aproximação para a raiz, dentre de uma precisão ε pré-fixada.

Passo 1: Isolamento das raízes

Nesse passo é necessário que consigamos determinar um intervalo finito [a,b], de tal forma que $\bar{x} \in [a,b]$. Para tal faz-se uma análise teórica e gráfica da função f(x), em que utiliza-se o seguinte teorema:

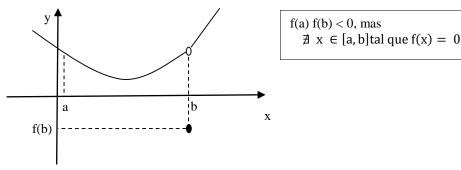
Teorema:

Seja f(x) uma função contínua no intervalo [a, b]. Se f(a)f(b) < 0 (ou seja, f(a) e f(b) tem sinais contrários), então existe pelo menos uma raiz real de f no intervalo [a,b].

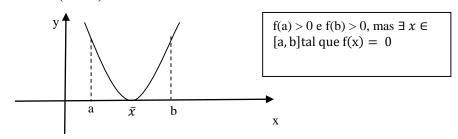


Observações:

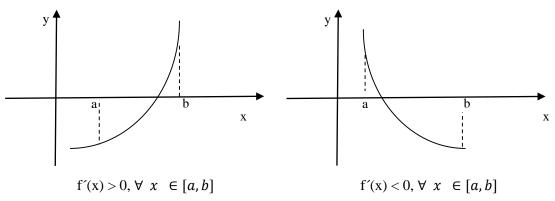
1) Se a função não for contínua o teorema não é válido.



2) O teorema não é suficiente!!!! Não vale a volta: Se a raiz em [a,b] existe, então f(a) e f(b) tem sinais contrários.(Falso)



3) Levando em consideração o teorema anterior e afirmando que f'(x) existe e não muda de sinal no intervalo, podemos afirmar que o zero é único (não existe ponto de inflexão).



"Se f é contínua e diferenciável em [a,b], f(a)f(b) < 0 e se f'(x) não troca de sinal em [a,b], ou seja, f'(x) > 0 ou f'(x) < 0, então f possui uma única raiz em [a,b]".

A análise gráfica da função f(x) ou da equação f(x) = 0 é fundamental para obter boas aproximações para a raiz.

Uma forma prática de investigar intervalos [a, b] que contém a raiz da função f consiste em expressar f em uma forma equivalente como segue:

$$f(x) = f_1(x) - f_2(x)$$

Nesse caso, f(x) = 0 se $f_1(x) - f_2(x) = 0$, ou seja, \bar{x} é a raiz da f se, e somente se, em \bar{x} , $f_1(x)$ e $f_2(x)$ se interceptam. Portanto a partir da intersecção do gráfico $f_1(x)_{\text{com}}$ $f_2(x)$ podemos determinar geometricamente um intervalo que contenha a raiz de f(x) (ou uma raiz aproximada).

Exemplos:

a)
$$f(x) = \sqrt{x} - 5e^{-x}$$

b)
$$f(x) = e^x + x$$

c)
$$f(x) = \ln(x) - e^x$$

d)
$$f(x) = sen(x) - \frac{1}{2}$$

e)
$$f(x) = x \ln(x) - 1$$

Passo 2: Refinamento

O refinamento da solução pode ser feito utilizando vários métodos numéricos. A forma como se efetua o refinamento é o que diferencia os métodos. Todos eles pertencem à classe dos métodos iterativos.

Um método iterativo consiste em uma sequência de instruções que são executadas passo a passo, algumas das quais são repetidas em ciclos (laços) até que um critério de parada seja satisfeito.

Critério de Parada

O critério de parada interrompe a sequência de aproximantes gerada pelos métodos iterativos. Este deve avaliar quando um aproximante está suficientemente próximo da raiz exata.

Assim, o processo iterativo é interrompido quando pelo menos um dos seguintes critérios é satisfeito:

I)
$$\frac{\left|\mathbf{x}_{k}-\mathbf{x}_{k-1}\right|}{\max(1,\left|\mathbf{x}_{k}\right|)} < \varepsilon \qquad \qquad \text{II}) \qquad \frac{\left|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right|}{\left|\mathbf{x}_{k+1}\right|} < \varepsilon \qquad \qquad \qquad \text{III)} \quad \left|\mathbf{f}(\mathbf{x}_{k})\right| < \varepsilon$$

sendo x_k o valor aproximado da raiz na k-ésima iteração e, ε a precisão desejada.

Os métodos numéricos são, em geral, desenvolvidos de forma a satisfazer um dos critérios de parada.

MÉTODOS PARA RESOLUÇÃO DE ZEROS DE FUNÇÃO

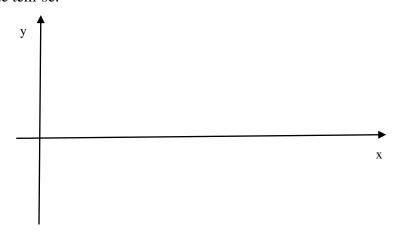
1 Método da Bissecção

Seja f(x) uma função contínua no intervalo [a,b] e tal que f(a)f(b) < 0.

O Método da Bissecção consiste em, a partir de um intervalo [a, b] que contenha a raiz \bar{x} , determinar uma sequência de intervalos [a_i, b_i], i = 0, 1, ..., em que a₀ =a e b₀=b, de modo que a amplitude do intervalo numa iteração é a metade da amplitude do intervalo anterior e que ele sempre contem a raiz \bar{x} .

A sequência de intervalos será calculada até que a amplitude do intervalo seja menor que a precisão ε requerida, isto é, $(b_k-a_k)<\varepsilon$.

Graficamente tem-se:



As sequências a_i , b_i e x_i são construídas da seguinte maneira:

- 1. Determinar um intervalo inicial $[a_0, b_0]$ tal que $f(a_0)f(b_0) < 0$;
- 2. Calcular $x_k = \frac{a_k + b_k}{2}$ (ponto médio do intervalo);
- 3. Se $\frac{|x_k x_{k-1}|}{|x_k|} < \varepsilon$ ou $|f(x_k)| < \varepsilon$ PARE, x_k é uma raiz de f(x);
- 4. Se $f(a_k)f(x_k) < 0$, então $a_{k+1} = a_k$ e $b_{k+1} = x_k$;
- 5. Se $f(a_k)f(x_k) > 0$, então $a_{k+1} = x_k$ e $b_{k+1} = b_k$;

Terminado o processo, tem-se um intervalo [a, b] que contém a raiz e uma aproximação \bar{x} para a raiz exata é obtida.

Convergência:

O Método da Bissecção converge sempre que a função f(x) for contínua no intervalo [a,b] e f(a)f(b) < 0. Entretanto, a convergência do Método da Bissecção é muito lenta, pois se o intervalo inicial é tal que $(b_0 - a_0) >> \epsilon$ e se ϵ for muito pequeno, o número de iterações tende a ser muito grande.

Estimativa do Número de Iterações:

Dada uma precisão ε e um intervalo inicial [a,b], é possível saber quantas iterações serão efetuadas pelo método até que obtenha $b-a<\varepsilon$, com b>a. Estimativa para o número de iterações:

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

Deve-se então obter k tal que $b_k - a_k < \varepsilon, \varepsilon \neq 0$.

Observações:

- O método converge sempre e pode ser aplicado para obter a raiz de qualquer equação;
- As iterações não envolvem cálculos trabalhosos;

Exemplo:

Utilizando o Método da Bissecção, determine a raiz da função $f(x) = \ln(x) - \sin(x)$, com $\varepsilon = 0.01$.

Exercícios:

- 1- Utilizando o Método da Bissecção, resolva a equação $x^3 \text{sen}(x) = 0$, com $\varepsilon = 0.001$. Sol.: $\bar{x} \cong 0.9287$
- 2- Utilizando o Método da Bissecção, resolva a equação $x^2 + \ln(x) = 0$, com $\varepsilon = 0.01$. Sol.: $\bar{x} \cong 0.6425$

Algoritmo

1 Dados f(x), a e b, tais que f(a)f(b) < 0 e ε uma precisão.

$$2 \operatorname{Faça} x = \frac{a+b}{2}$$

3 Enquanto $|f(x)| > \varepsilon$, faça

início

Se
$$f(a)f(x) < 0$$
, então

$$b = x$$

senão

$$a = x$$

$$x = \frac{a+b}{2}$$

fim

4 Escreva (
$$\bar{x} = \frac{a+b}{2}$$
)

2 Método da Posição Falsa (Método das Cordas ou das Secantes)

Seja f(x) uma função contínua no intervalo [a,b] e tal que f(a)f(b) < 0.

O Método da Posição Falsa utiliza a mesma idéia do Método da Bissecção, mas calcula a média aritmética ponderada entre a e b com pesos |f(a)| e |f(b)|, respectivamente. Desta forma, temos:

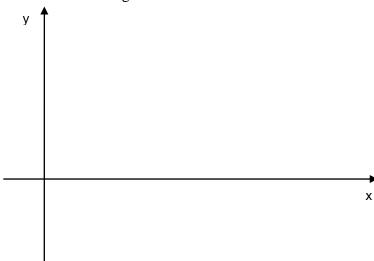
$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|}$$

Como f(a) e f(b) tem sinais opostos, tem-se:

$$x = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

Graficamente, o valor de x é o ponto de intersecção entre o eixo \overrightarrow{Ox} e a reta r(x) que passa por (a,f(a)) e (b,f(b)):

As iterações são realizadas da seguinte forma:



Convergência:

Se f(x) for contínua no intervalo [a, b] com f(a)f(b) < 0, então o Método da Posição Falsa converge.

Critério de parada:

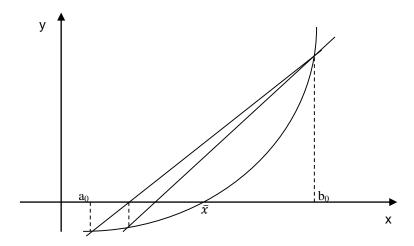
O método iterativo da posição falsa para quando:

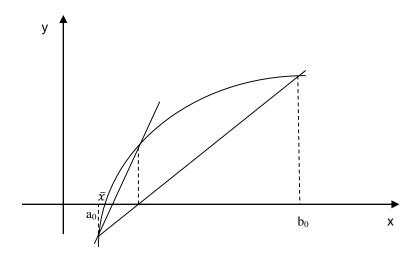
$$\frac{\left|\mathbf{x}_{k+1} - \mathbf{x}_{k}\right|}{\left|\mathbf{x}_{k+1}\right|} < \varepsilon,$$

sendo ε um valor pré-estabelecido para a precisão.

Observações:

• Se uma função é côncava ou convexa em [a, b], então no Método da Posição Falsa uma das extremidades permanece fixa.





• Geralmente, o Método da Posição Falsa obtém como raiz aproximada um ponto \bar{x} , no qual $|f(\bar{x})| < \varepsilon$, sem que o intervalo [a,b] seja "pequeno" o suficiente. Portanto, se for exigido que os dois critérios de parada (isto é, $|f(\bar{x})| < \varepsilon$ e $|b-a| < \varepsilon$) sejam satisfeitos simultaneamente, o método pode não convergir.

Exemplo:

Utilizando o Método da Posição Falsa, determine a primeira raiz positiva da função $f(x) = x^3 - 9x + 3$ com $\varepsilon = 5$ 10⁻⁴

Exercício:

Utilizando o Método da Posição Falsa, resolva a equação $x^3 - \text{sen}(x) = 0$, com $\varepsilon = 0.001$. Sol.: $\bar{x} \cong 0.9287$

3 Método do Ponto Fixo

(Método Iterativo Linear – Método das Aproximações Sucessivas)

Seja f(x) uma função contínua em [a,b], intervalo que contém uma raiz da equação f(x) = 0.

O Método do Ponto Fixo (MPF) consiste em transformar a equação f(x) = 0 em uma equação equivalente $x = \varphi(x)$ e a partir de uma aproximação inicial x_0 , gerar uma sequência $\{x_k\}$ de aproximações para \bar{x} pela relação $x_{k+1} = \varphi(x_k)$, k = 0,1,2..., $(f(\bar{x}) = 0$ se, e somente se, $\varphi(\bar{x}) = \bar{x}$). Assim, transformamos o problema de encontrar um zero de f(x) no problema de encontrar um ponto fixo de $\varphi(x)$. Existem muitas maneiras de transformar f(x) em $x = \varphi(x)$.

Exemplo:

Para a equação $x^2 - x - 2 = 0$, tem-se várias funções de iteração:

a.
$$x = x^2 - 2$$

c.
$$x = \sqrt{2+x}$$

b.
$$x = 1 + \frac{2}{x}$$

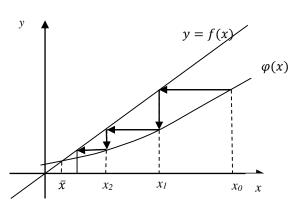
d.
$$x = \frac{2}{x-1}$$

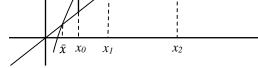
OBS: A forma geral das funções de iteração $\varphi(x)$ é $\varphi(x) = x + A(x)$ f(x), com a condição de que em \bar{x} , ponto fixo de $\varphi(x)$, se tenha $A(\bar{x}) \neq 0$. Desta forma, vamos verificar que:x $f(\bar{x}) = 0$ se, e somente, se $\varphi(\bar{x}) = \bar{x}$.

Seja \bar{x} tal que $f(\bar{x}) = 0$. Daí $\varphi(\bar{x}) = \bar{x} + A(\bar{x})f(\bar{x})$ e portanto $\varphi(\bar{x}) = \bar{x}$. Se $\varphi(\bar{x}) = \bar{x}$, então $\bar{x} + A(\bar{x})f(\bar{x}) = \bar{x}$. Logo $A(\bar{x})f(\bar{x}) = 0$ e temos $f(\bar{x}) = 0$, pois $A(\bar{x}) \neq 0$.

Exemplo: $x = x - \frac{x^2 - x - 2}{m}, m \neq 0, (A(x) = \frac{1}{m}).$

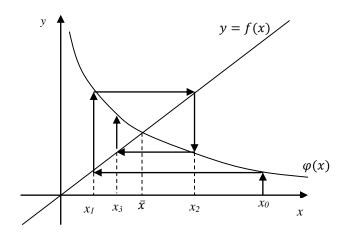
Graficamente, uma raiz da equação $x = \varphi(x)$ é a abcissa do ponto de intersecção da reta y = x e da curva $y = \varphi(x)$.





 $k \to \infty e\{x_k\} \to \bar{x}$

 $k \to \infty$ e $\{x_k\}$ não tende a \bar{x}



$$k \to \infty \ e \{x_k\} \to \bar{x}$$

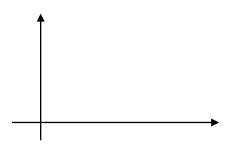
Portanto, para certas $\varphi(x)$, o processo pode gerar uma sequência que diverge de \bar{x} .

Convergência

Dada uma função f(x) = 0, existe mais que uma função $\varphi(x)$ tal que $f(x) = 0 \Leftrightarrow x = \varphi(x)$, entretanto, não é para qualquer escolha de $\varphi(x)$ que o processo recursivo gera uma sequência convergente para \bar{x} .

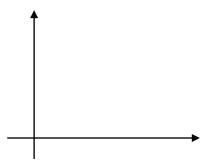
Exemplo:

Seja $x^2+x-6=0$, cujas raízes são $\bar{x}_1=-3$ e $\bar{x}_2=2$. Considere a raiz $\bar{x}_2=2$ e $\varphi_1(x)=6-x^2$. Tomando $x_0=1.5$ temos:



Podemos observar que $\{x_k\}$ não está convergindo para $\bar{x}_2 = 2$.

Porém, se $\bar{x}_2 = 2$ e $\varphi_2(x) = \sqrt{6-x}$, começando com $x_0 = 1.5$, temos:



e podemos observar que $\{x_k\}$ está convergindo para $\bar{x}_2=2$.

Teorema: (Condições necessárias e suficientes para convergência do MPF)

Seja \bar{x} uma raiz da equação f(x) = 0, isolada num intervalo I centrado em \bar{x} . Seja $\varphi(x)$ uma função de iteração para a equação f(x) = 0. Se

- i. $\varphi(x)$ e $\varphi'(x)$ são contínuas em I;
- ii. $|\varphi'(x)| \le M < 1, \forall x \in I$;
- iii. $x_0 \in I$;

então, a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = \varphi(x_k), k = 0,1,2,...$ converge para \bar{x} .

Exemplo:

Seja
$$x^2 + x - 6 = 0$$
, cujas raízes são $\bar{x}_1 = -3$ e $\bar{x}_2 = 2$. Analisar $\varphi_1(x) = 6 - x^2$ e $\varphi_2(x) = \sqrt{6 - x}$ com $x_0 = 1.5$.

Critério de parada:

O método iterativo do ponto fixo pára quando:

$$\frac{\left|\mathbf{X}_{k+1} - \mathbf{X}_{k}\right|}{\left|\mathbf{X}_{k+1}\right|} < \varepsilon$$

sendo ε um valor pré-estabelecido para a precisão.

Exemplo:

Utilizando o MIL, determine a raiz da equação $x^2 - \text{sen }(x) = 0$, com $\varepsilon = 0.004$.

Exercício:

Utilizando o MIL, determine a raiz da equação $f(x)=2x-\ln(x)-4$ com $\varepsilon=10^{-3}$. Sol.: $\bar{x}\cong 2.4478835$

Algoritmo

- 1 Supondo as hipóteses do teorema válidas, x_0 uma solução inicial, $\varphi(x)$ a função de iteração e ε uma precisão pré-estabelecida
- $2 \mathbf{Erro} = 1$
- 3 Enquanto **Erro** > ε faça início

$$x_{I} = \varphi(x_{0})$$
Erro = $\left| \frac{x_{1} - x_{0}}{x_{1}} \right|$

$$x_{0} = x_{I}$$

fim

4 Escreva (A solução é x_0)

4 Método de Newton (Método das Tangentes)

O Método de Newton tenta garantir a aceleração do Método do Ponto Fixo escolhendo uma função de iteração $\varphi(x)$, tal que $\varphi'(x) = 0$.

Desta forma, dada a equação f(x) = 0 e, partindo da forma geral $\varphi(x)$, queremos obter a função A(x) tal que $\varphi'(\bar{x}) = 0$.

Logo, dada a função de iteração $\varphi(x) = x + A(x)f(x)$ temos que:

$$\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$

$$x = \overline{x} \rightarrow \varphi'(\overline{x}) = 1 + A'(\overline{x})f(\overline{x}) + A(\overline{x})f'(\overline{x})$$

Como $f(\bar{x}) = 0$, temos;

$$\varphi'(\bar{x}) = 1 + A(\bar{x})f'(\bar{x})$$

Assim
$$\varphi'(\bar{x}) = 0$$
 se, e somente se, $1 + A(\bar{x})f'(\bar{x}) = 0$ e daí $A(\bar{x}) = -\frac{1}{f'(x)}$

Então, dada f(x), a função de iteração $\varphi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\varphi'(\bar{x}) = 0$, pois como podemos verificar:

$$\varphi'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$
 e como $f(\bar{x}) = 0$, $\varphi'(\bar{x}) = 0$, desde que $f'(\bar{x}) \neq 0$.

Assim, escolhido x_0 , a sequência $\{x_k\}$ será determinada por:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k=0,1,2...$$

O qual é denominado Método de Newton.

Uma outra maneira de deduzir o método de Newton é utilizar a ideia de aproximantes da seguinte maneira:

Seja \bar{x} a raiz da equação f(x) = 0, tal que $\bar{x} \in [a, b]$, finito e que f'(x) e f''(x)sejam funções contínuas que preservam o sinal em [a,b]. Seja x_k , tal que $x_k \cong \bar{x}$, $x_k \in$ [a, b] e h_k uma pequena tolerância positiva tal que:

$$\bar{x} = x_k + h_k \qquad (I) .$$

Aplicando-se a fórmula de Taylor em torno de \bar{x} temos:

$$f(\bar{x}) = f(x_k + h_k) = f(x_k) + h_k f'(x_k) + \frac{(h_k)^2}{2!} f''(x_k) + \dots + Erro$$

Truncando-se a série no termo de ordem 2 obtemos uma aproximação linear para $f(\bar{x})$:

$$f(\bar{x}) \cong f(x_k) + h_k f'(x_k)$$

Como $f(\bar{x}) = 0$, temos que $f(x_k) + h_k f'(x_k) \cong 0$ e daí $h_n \cong \frac{-f(x_k)}{f'(x_k)}$.

Ao usarmos (I) temos que:

$$\bar{x} - x_k \cong \frac{-f(x_k)}{f'(x_k)}$$
.

Se substituirmos \bar{x} por um novo valor x_{k+1} temos:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0,1,2,...,$$

o qual é denominado Método de Newton.

Interpretação geométrica

Dado x_k , o valor de x_{k+1} pode ser obtido graficamente traçando-se pelo ponto $(x_k, f(x_k))$ a tangente à curva y = f(x). O ponto de intersecção da tangente com o eixo dos x determina x_{k+1} .

Tomamos como uma primeira aproximação da raiz $x_0 = b$ e traçamos a reta tangente à curva no ponto $(x_0, f(x_0))$. Então temos:

$$tg\alpha = \frac{f(x_0)}{x_0 - x_1} \quad \text{e} \quad tg \ \alpha = f'(x_0)$$

Logo:

$$\frac{f(x_0)}{x_0 - x_1} = f'(x_0)$$

e portanto:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

E assim sucessivamente.

OBS: Devido a sua interpretação geométrica, o método de Newton também é conhecido como Método das Tangentes.

Convergência

Se f(x), f'(x) e f''(x) são contínuas num intervalo I que contém a raiz $x = \bar{x}$ de f(x) e se $f'(\bar{x}) \neq 0$, então o Método de Newton converge, sendo sua convergência de ordem quadrática.

Critério de parada:

O método iterativo de Newton para quando:

$$\frac{\left|x_{k+1}-x_{k}\right|}{\left|x_{k+1}\right|}<\varepsilon,$$

sendo ε um valor pré-estabelecido para a precisão.

Exemplo:

Utilizando o método de Newton, determine a raiz positiva da função $f(x) = 4 \cos(x) - e^x = 0 \cos \varepsilon = 10^{-2}$.

Exercício

- 1 Utilizando o método de Newton, determine a raiz da equação f(x) = x + 1 sen(x) com $\varepsilon = 10^{-4}$.
- 2 Determine a raiz positiva aproximada de $f(x) = x^2 7 = 0$ com $\varepsilon = 10^{-6}$.

Exercícios:

- 1 Determine geometricamente as raízes:
- a) $f(x) = 1-x \ln x = 0 \ (x \in [1,2])$
- b) $f(x) = 2^x 3x = 0$ ($x_1 \in [0,1]$ e $x_2 \in [3,4]$)
- c) $f(x) = x^3 3 \text{ sen } x = 0 \ (x_1 \in [-2, -1] \text{ e } x_2 \in [1, 2])$
- d) $f(x) = x^2 9 \log x = 0$ ($x_1 \in [2,3]$ e $x_2 \in [0,1]$)
- e) $f(x) = \ln x \frac{1}{2}e^x = 0$ (não existe raízes reais)
- f) $f(x) = \sqrt{x} 5 e^x = 0$
- 2 Usando o Método da Bissecção, determine uma raiz das funções a seguir com a precisão $\varepsilon = 10^{-3}$
 - a) $f(x) = x^3 senx$

c) $f(x) = \ln x - senx$

- b) $f(x) = 3x \cos x + 1$
- 3 Determine a raiz de $f(x) = \cos x + \ln x + x = 0 \text{ com } \epsilon = 10^{-2} \text{ e } x \in [0.1, 0.5]$ utilizando os seguintes métodos numéricos:
 - a) Método da Bissecção;

- c) Método do Ponto Fixo.
- b) Método da Posição Falsa;
- 4 Aplique o Método do Ponto Fixo para calcular a raiz de $x^2 5 = 0$ com $\varepsilon = 10^{-2}$.
 - a) partindo do intervalo inicial [2,2.5];
 - b) partindo do intervalo inicial [2,3].
- 5 Calcule pelo menos uma raiz real das equações abaixo, com $\epsilon = 10^{-3}$, usando o Método de Newton.
- $f) \quad 2\cos x = \frac{e^x}{2}$

- c) $e^x + \cos x = 5$
- a) $x^3 \cos x = 0$ b) $x^2 + e^{3x} 3 = 0$ c) $e^x + \cos x = 5$ d) $3x^4 x = 3$ e) $\frac{x}{2} \tan x = 0$
- Determine todas as raízes de $f(x) = 0.2x^3 3.006x^2 + 15.06x 25.15 = 0$ com ϵ = 10⁻⁴, utilizando o Método de Newton.
- 7 O polinômio $p(x) = x^5 \frac{10}{9}x^3 + \frac{5}{21}x$ tem seus cinco zeros reais, todos no intervalo (-1;1). Determine-os, pelo respectivo método, usando $\varepsilon = 10^{-6}$
 - a) \bar{x}_1 : Método de Newton (x_0 =-0.8)
 - b) \bar{x}_2 : Método da Bissecção ([a,b]=[-0.75,-0.25])
 - c) \bar{x}_3 : Método da Posição Falsa ([a,b]=[-0.25,0.25])
 - d) \bar{x}_4 : Método do Ponto Fixo ([a,b]=[0.2,0.6])
 - e) \bar{x}_5 : Método de Newton (x_0 =0.8)

- Seja a equação $f(x) = xe^{-x} e^{-3}$.
 - a) Verifique gráfica e analiticamente que f(x) possui um zero no intervalo [0,1];
 - b) Determine a raiz de f(x) em [0,1], usando o Método de Newton com $x_0=0.9$ e precisão $\varepsilon = 5 \cdot 10^{-6}$.
- 9 Seja a equação $f(x) = e^x 4x^2$ e ξ sua raiz no intervalo (0,1). Determine ξ com $\varepsilon = 10^{-5}$ utilizando o Método de Newton ($x_0 = 0.5$).
- 10 Aplique o Método de Newton à equação $x^3 2x^2 3x + 10 = 0$ com $x_0=1.9$. Justifique o que acontece.
- 11 O valor de π pode ser obtido através da resolução das seguintes equações:
 - a) sen x = 0
 - b) $\cos x + 1 = 0$

Aplique o método de Newton com $x_0=3$ e precisão $\varepsilon=10^{-7}$ em cada caso e, compare os resultados obtidos. Justifique.

- 12 Aplique o Método das Aproximações Sucessivas com $\varepsilon = 10^4$ e seis casas decimais:
 - a) $f(x) = x^2 9 \log x = 0$ ($x_1 = 3.0805$; $x_2 = 0.0045$)
 - b) $f(x) = x^3 x 1 = 0$ (x = 1.3252)
 - c) $f(x) = (0.5)^x + 3x = 0$ ($x_1 = -3.3134$; $x_2 = -0.4578$)
 - d) $f(x) = x 2^x 6 = 0 (x = 1.7652)$
 - e) $f(x) = x \cos x = 0$ (x = 0.739)
- 13 Aplique o Método de Newton para determinar as raízes das equações dado $\varepsilon = 10^4$ e seis casas decimais:
 - a) $f(x) = 7 \log x x = 0$ ($x_1 = 1.893$ e $x_2 = 4.7133$)
 - b) $f(x) = (2-x) e^x 2 = 0$ (x = 1.5942)
 - c) f(x) = sen x + 2x 5 = 0 (x = 2.0582)
 - d) $f(x) = e^x (x-1) 1 = 0$ (x = 1.2785)
 - e) $f(x) = x^3 x^2 3 = 0$ (x = 1.86371)
- 14 Seja $f(x) = e^x 4x^2$ e sua raiz $x^* \in [0,10]$. Tomando $x_0=0.5$, encontre x = 0.5 $\varepsilon = 10^4$ e seis casas decimais, usando:
 - a) Método das Aproximações sucessivas com $F(x) = \frac{1}{2}e^{\frac{\pi}{2}}$;
 - b) Método de Newton;
 - c) Método das Cordas.

Compare a convergência.